Skip to main content

Mathematical Problems in the Ziegler—Natta Polymerization Process

  • Chapter

Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Some models describing the Ziegler-Natta polymerization are reviewed, and their mathematical aspects are discussed. A model for the heterogeneous polymerization is developed assuming a continuous approximation of the catalyst site distribution. Some mathematical results about these models are presented.

Keywords

  • Diffusion Equation
  • Free Boundary
  • Catalyst Particle
  • Monomer Concentration
  • Complex Flow

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1348-2_7
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1348-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreucci, D., Fasano, A., and Ricci, R., Existence of solutions for a continuous multigrain model for polymerization, to appear on M3AS.

    Google Scholar 

  2. Andreucci, D., Fasano, A., and Ricci, R., On the growth of a polymer layer around a catalytic particle: A free boundary problem, NoDEA, 4 (1997), 511–20.

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Cecchin, G., Reactor granule technology: The science of stuctural versatility, Polypropylene, Past, Present and Future, Conference, Ferrara Montell Polyolefins, Centro Ricerche “G. Natta,” (1998).

    Google Scholar 

  4. Fasano, A., Andreucci, D., and Ricci, R., Modello matematico di replica nel caso limite di distribuzione continua di centri attivi, Meccanismi di accrescimento di poliolefine su catalizzatori Ziegler-Natta, Simposio Montell 96, edited by S. Mazzullo and G. Cecchin, Montell Polyolefins, Centro Ricerche “G. Natta” (1997), 155–74.

    Google Scholar 

  5. Floyd, S., Choi, K.Y., Taylor, T.W., and Ray, W.H., Polymerization of olefins through heterogeneous catalyst. III. Polymer particle modelling with an analysis of interparticle heat and mass tranfer effects,J. Appl. Polym. Sci. 32 (1986), 2935–60.

    CrossRef  Google Scholar 

  6. Hutchinson, R.A., Chen, C.M., and Ray, W.H., Polymerization of olefins through heterogeneous catalyst. X. Modeling of particle growth and morphology, J. Appl. Polym. Sci. 44 (1992), 1389–414.

    CrossRef  Google Scholar 

  7. Ladyzenskaja, O.A., Solonnikov, V.A., and Ural’ceva, N.N., Linear and quasi—linear equations of parabolic type, Translations of Mathematical Monographs 23, Providence RI, American Mathematical Society (1968).

    Google Scholar 

  8. Laurence, R.L., and Chiovetta, M.G., Heat and mass transfer during olefin polymerization from the gas phase, Polymer Reaction Engng, edited by K.H. Reichert and W. Geiseler, Hanser, Munich (1983), 73–112.

    Google Scholar 

  9. Mei, G., Modello polimerico multigrain e double grain, Meccanismi di accrescimento di poliolefine su catalizzatori Ziegler-Natta Simposio Monte11 96, edited by S. Mazzullo and G. Cecchin, Montell Polyolefins, Centro Ricerche “G. Natta” (1997), 135–53.

    Google Scholar 

  10. Moore, E. P., Jr., The Rebirth of Polypropylene: Supported Catalysts Hanser Pub., Munich (1998).

    Google Scholar 

  11. Nagel, E.J., Kirillov, V.A., and Ray, W.H., Prediction of molecular weight distribution for high-density polyolefins, Ind. Eng. Prod. Res. Dev. 19 (1980), 372–9.

    CrossRef  Google Scholar 

  12. Ricci, R., Andreucci, D., Fasano, A., Gianni, R., and Primicerio, M., Diffusion driven crystallization in polymers, free boundary problems: Theory and applications, Res. Notes in Math., 363, edited by M. Niezgodka and P. Strzelecki, Longman (1996), 359–67.

    Google Scholar 

  13. Schmeal, W.R., and Street, J.R., Polymerization in expanding catalyst particlesAIChE J 17 (1971), 1188–97.

    CrossRef  Google Scholar 

  14. Ziabicki, A., Generalized theory of nucleation kinetic, I, II., J. Chem. Phys. 48, (1968), 4368–80.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andreucci, D., Ricci, R. (2000). Mathematical Problems in the Ziegler—Natta Polymerization Process. In: Fasano, A. (eds) Complex Flows in Industrial Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1348-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1348-2_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7106-2

  • Online ISBN: 978-1-4612-1348-2

  • eBook Packages: Springer Book Archive