Skip to main content

Problems of Nonlinear Fluid Dynamics in Industrial Plants

  • Chapter

Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Pipeline transportation of complex fluids generally involves an analysis of nonlinear fluid dynamic phenomena, especially during transient phases. Snamprogetti has developed some models for predictions of pipeline flow characteristics relevant to both non-Newtonian solid-liquid suspensions and compressible fluid transport. This chapter is divided into two parts:

  • CWS Pipeline Flow: Homogeneous and Heterogeneous Conditions, describing the properties of coal-water slurries considered both in their homogeneous flow conditions (transient motion influenced by complex rheological behavior) and with respect to prediction of unstable flow caused by settling processes.

  • Transient Compressible Flow at High Mach Numbers: A Conservative Method for Pipeline Flow, describing the development of a code for simulation of transient phenomena associated with gas pipeline flow at high Mach numbers.

Keywords

  • Shock Wave
  • Mach Number
  • Rarefaction Wave
  • Riemann Problem
  • Settling Velocity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1348-2_3
  • Chapter length: 62 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1348-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Beris, A.N., Tsamopoulos, J.A., and Armstrong, R.C., Creeping motion of a sphere through a Bingham plastic, J. Fluid Mech.,158, 219–44 (1985).

    MathSciNet  MATH  CrossRef  Google Scholar 

  2. Carniani, E., Donati, E., Ercolani, D., and Ferroni, E., and Gabrielli, G., Influence of mineral matter on CWS characteristics, 14th Int. Tech. Conf. on Coal e4 Slurry Technology, Clearwater, Fl., USA, 55364 (1989).

    Google Scholar 

  3. Chabra, R.P., Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press, Boca Raton, Fl., (1993).

    Google Scholar 

  4. Cheng, D.C.H., Yield stress: A time dependent property and how to measure it, Stevenage: Warren Spring Laboratory, Report n. LR 540 (MH) (1985).

    Google Scholar 

  5. Cheng, D.C.H., and Evans, F., Phenomenological characterization of the rheological behaviour of inelastic reversible thixotropic and antithixotropic fluids, Br. J. Appl. Phys. 16, 1599 (1965).

    CrossRef  Google Scholar 

  6. Cheng, D.C.H., and Whittaker, W., The start-up flow of thixotropic fluids in pipelines,Stevenage: Warren Spring Laboratory, Report n. LR 155 (MH) (1972).

    Google Scholar 

  7. De Angelis, E., Modelli stazionari e non stazionari per fluidi di Bingham in viscosimetro e in condotta, Ph.D. Thesis, Univ. of Florence (1996).

    Google Scholar 

  8. De Angelis, E., Fasano, A., Primicerio, M., Rosso, F., and Carniani, E., Sedimentation bed dynamics for fluids with yield stress in a pipe, Quarto Convegno Internazionale di Fluidodinamica Multifase nell’Impiantistica Industriale, Ancona-Italy, 85–93 (1994).

    Google Scholar 

  9. Dedegil, M.Y., Drag Coefficient and Settling Velocity of Particles in Non-Newtonian Suspensions, International Symposium on Slurry Flows 38, 107th American Mechanical Engineering, Anaheim, Calif., USA, 9–15 (1986).

    Google Scholar 

  10. Ercolani, D., Terenzi, A., Weber, M., and Dedegil, M.Y., Mathematical simulation of the sedimentation of heterogeneous particles in a highly concentrated suspension, The Second Italian Conference on Chemical and Process Engineering, Firenze-Italy (1995).

    Google Scholar 

  11. Fasano, A., A mathematical model for the dynamics of sediments in pipeline, Proceedings of the 7th ECMI Conference 1994, edited by H. Neunzert, Wiley & Teubner, 241–9 (1996).

    Google Scholar 

  12. Fasano, A., Pipeline of liquid fuels with peculiar rheological properties, 2nd Alan Tyler Memorial Lecture, ECMI 98, edited by S. Bergh et al., Teubner, (1998).

    Google Scholar 

  13. Fasano, A., Manni, C., and Primicerio, M., Modelling the dynamics of fluidizing agents in coal-water slurries, Proceedings of the International Symposium on Nonlinear Problems in Engineering and Science, edited by Shutie Xiao and Xiang-Cheng Hu, Science Press, Beijing, 64–71 (1991).

    Google Scholar 

  14. Happel, J., and Brenner, H., Low Reynolds Number Hydrodynamics, Kluwer Academic Publishers, Boston (1983).

    Google Scholar 

  15. Mancini, A., Evolution of sedimentation profiles in the transport of CWS through a pipeline, Progress in Ind. Math. (ECMI 96), edited by M. Brons et al., Teubner 1997, 442–9.

    Google Scholar 

  16. Rosso, F., Sedimentation of impurities during the pipelining of coal-water slurries, Complex Flows in Industrial Processes, MSSET series, Birkhauser (1999).

    Google Scholar 

  17. Terenzi, A., Carniani, D., and Ercolani, D., CWS fluid dynamics experimental activity in pilot plant, Quarto Convegno Internazionale di Fluidodinamica Multifase nell’Impiantistica Industriale, Ancona, Italy, 94–108 (1994).

    Google Scholar 

  18. Terenzi, A., Ercolani, D., and Carniani, D., Determinazione teoricosperimentale di profili di velocità nel moto in condotta di sospensioni solido-liquido non-newtonianeImpiantistica Italiana, Anno VII n. 3, 159–68 (1995).

    Google Scholar 

  19. Terenzi, A., Ercolani, D., and Carniani, E., Rheological properties and settling behaviour influences in CWS pipeline flow, 21 th Int. Tech. Conf. on Coal Utilization E4 Fuel Systems, Clearwater, Fl., USA, 64556 (1996).

    Google Scholar 

  20. Terenzi, A., Ercolani, D., Lapasin, R., and Alessandrini, A., Modelli di flusso in condotta di miscele acqua-carbone, Terzo Convegno internazionale di Fluidodinamica Multifase nell’Impiantistica Industriale, Castelnuovo di Garfagnana (LU)-Italy, 135–52 (1992).

    Google Scholar 

  21. Terenzi, A., Ercolani, D., Lapasin, R., and Alessandrini, A., Pipeline flow models of coal-water slurries, 18th International Technical Conference on Coal Utilization E4 Fuel Systems, Clearwater, Florida, USA, 703–19 (1993).

    Google Scholar 

References

  1. Aziz, K., and Govier, G.W., The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold Co., New York (1972).

    Google Scholar 

  2. Bird, R.B, Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, John Wiley & Sons, New York (1960).

    Google Scholar 

  3. Crane, Ltd. Flow of Fluids through Valves, Fitting and Pipe, Technical Paper no. 410M, Suffolk, England: Author (1988).

    Google Scholar 

  4. Ford, P.E., Pipelines for viscous fuels, Fourth World Petroleum Congress, 115 (1955).

    Google Scholar 

  5. Godunov, S., Zabrodine, A., Ivanov, M., Kraiko, A., and Prokopov, G., Resolution Numerique des Problemes Multidimensionnels de la Dynamique des Gaz, Editions IR, Moscow (1979).

    Google Scholar 

  6. Gottlieb, J.J., and Groth, C.P.T., Assessment of Riemann solvers for unsteady one-dimensional inviscid flows of perfect gas, J. Computational Phys.,78, 437 (1988).

    MATH  CrossRef  Google Scholar 

  7. Hague, M.A., Richardson, S.M., Saville G., Chamberlain, G., and Shirvill, L., Blowdown of pressure vessels II experimental validation of computer model and case studies, Trans. IChemE, 70, 10 (1992).

    Google Scholar 

  8. Hirsch, C., Numerical Computation of Internal and External Flows, John Wiley & Sons, New York (1990).

    MATH  Google Scholar 

  9. Keenan, J.H., and Neumann, E.P., Measurements of friction in a pipe for subsonic and supersonic flow of air, J. Appl. Mech., 13, A91 (1946).

    Google Scholar 

  10. Kuehn, T.H., and Goldstein, R.J., Correlating equations for natural convection heat transfer between horizontal circular cylinders, Int. J. Heat Mass Transfer, 19, 1127 (1976).

    CrossRef  Google Scholar 

  11. Landau, L.D., and Lifshitz, E.M., Fluid Mechanics, 2nd edition, Pergamon Press, Oxford (1987).

    Google Scholar 

  12. Lax, P.D., Weak solutions of non linear hyperbolic equations and their numerical computation, Comm. Pure and Applied Mathematics, 7, 159 (1954).

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Lelchuk, V.L., Heat transfer and hydraulic flow resistance for streams of high velocity, NACA Tech. Memo., no. 1054 (1943).

    Google Scholar 

  14. Liepmann, H.W., and Roshko, A., Elements of Gas Dynamics, John Wiley & Sons, New York (1957).

    Google Scholar 

  15. Pintabona, R., and Colacicco, P., Il calcolo delle valvole di sicurezza per gas, La Termodinamica, 5, 101 (1994).

    Google Scholar 

  16. Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Computational Phys., 43, 357 (1981).

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Romiti, A., Meccanica dei fluidi, ISEDI (1974).

    Google Scholar 

  18. Shapiro, A.H., The Dynamics and Thermodynamics of Compressible Fluid Flow, John Wiley & Sons, New York (1953).

    Google Scholar 

  19. Terenzi, A., Mancini, N., and Podenzani, F., Transient compressible flow in pipelines: A Godunov-type solver for Navier-Stokes equations, to appear.

    Google Scholar 

  20. Truitt, W.R., Fundamentals of Aerodynamics Heating, Ronald Press, New York (1960).

    Google Scholar 

  21. Yee, H.C., Beam, R.M., and Warming, R.F., Boundary approximation for implicit schemes for one-dimensional inviscid equations of gas dynamics, AIAA J., 20, 1203 (1982).

    MathSciNet  MATH  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terenzi, A., Carniani, E., Donati, E., Ercolani, D. (2000). Problems of Nonlinear Fluid Dynamics in Industrial Plants. In: Fasano, A. (eds) Complex Flows in Industrial Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1348-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1348-2_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7106-2

  • Online ISBN: 978-1-4612-1348-2

  • eBook Packages: Springer Book Archive