Real-Time Collision Avoidance: Differential Game, Numerical Solution, and Synthesis of Strategies

  • Rainer Lachner
  • Michael H. Breitner
  • H. Josef Pesch
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 5)


Contemporary developments of on-board systems for automatic or semiautomatic driving include car collision avoidance systems. For this purpose two approaches based on pursuit-evasion differential games are compared. On a freeway a correct driver (evader) is faced with a wrong-way driver (pursuer), i.e., a person driving on the wrong side of the road. The correct driver tries to avoid collision against all possible maneuvers of the wrong-way driver and additionally tries to stay on the freeway. The representation of the optimal collision avoidance behavior along many optimal paths is used to synthesize an optimal collision avoidance strategy by means of neural networks. Examples of simulations that prove a satisfactory performance of the real-time collision avoidance scheme are presented.


Optimal Path Collision Avoidance Differential Game Singular Surface Minimax Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, J. A. An Introduction to Neural Networks. MIT Press, Cambridge, MA, 1995.zbMATHGoogle Scholar
  2. [2]
    Annema, A. J. Feedforward Neural Networks: Vector Decomposition Analysis, Modelling and Analog Implementation. Kluwer, Boston, MA, 1995.Google Scholar
  3. [3]
    Başar, T., and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London, UK, 1982 and 1995 (2nd edition).zbMATHGoogle Scholar
  4. [4]
    Blum, E. K., and L. K. Li. Approximation Theory and Feedforward Networks, Neural Networks, 4,1990.Google Scholar
  5. [5]
    Boulter, J., D. Maher, and M. F. Aburdene. Collision Avoidance Using Ultrasonic Waves. Report 17837, Bucknell University, Department of Electrical Engineering, Lewisburg, PA, 1994.Google Scholar
  6. [6]
    Breitner, M. H. Robust optimale Rückkopplungssteuerungen gegen unvorhersehbare Einflüsse: Differentialspielansatz, numerische Berechnung und Echtzeitapproximation. Ph.D. Thesis, VDI-Verlag, VDI Fortschritt-Bericht # 596, Reihe # 8 “Meß-, Steuerungs- und Regelungstechnik”, Düsseldorf, Germany, 1996.Google Scholar
  7. [7]
    Breitner, M. H., and H. J. Pesch. Reentry Trajectory Optimization under Atmospheric Uncertainty as a Differential Game. Annals of the International Society of Dynamic Games, 1, 1994.Google Scholar
  8. [8]
    Breitner, M. H., H. J. Pesch, and W. Grimm. Complex Differential Games of Pursuit-Evasion Type with State Constraints, Necessary Conditions for Optimal Open-Loop Strategies (Part 1) and Numerical Computation of Optimal Open-Loop Strategies (Part 2). Journal of Optimization Theory and Applications, 78,1993.Google Scholar
  9. [9]
    Chini, C. Numerische Berechnung optimaler Ausweichmanöver mit einem Differentialspielansatz und Neuronalen Netzen. Diploma Thesis, Munich University of Technology, Mathematical Institute, Munich, Germany, 1994.Google Scholar
  10. [10]
    Gallant, S. I. Neural Network Learning and Expert Systems. MIT Press, Cambridge, MA, 1993.zbMATHGoogle Scholar
  11. [11]
    Galperin, E. A. The Cubic Algorithm for Global Games with Application to Pursuit-evasion Games. Computers and Mathematics with Applications, 26, 1993.Google Scholar
  12. [12]
    Hautzinger, H., D. Heidemann, and B. Krämer. Fahrleistungserhebung 1990 - Inlandsfahrleistung und Kfz-Unfallrisiko in der Bundesrepublik Deutschland (alte Bundesländer). Report of the Bundesanstalt für Straßenwesen # M20, Wirtschaftsverlag NW/Verlag für neue Wissenschaft, Bremerhaven, Germany, 1993.Google Scholar
  13. [13]
    Hautzinger, H., B. Tassaux-Becker, and R. Hamacher. Verkehrsunfallrisiko in Deutschland. Report of the Bundesanstalt für Straßenwesen # M58, Wirtschaftsverlag NW/Verlag für neue Wissenschaft, Bremerhaven, Germany, 1996.Google Scholar
  14. [14]
    Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Networks, 4, 1991.Google Scholar
  15. [15]
    Hornik, K., M. Stinchcombe, and H. White. Multi-Layer Feedforward Networks are Universal Approximators. Neural Networks, 2, 1989.Google Scholar
  16. [16]
    Isaacs, R. P. Games of Pursuit. Paper # P-257. The RAND Corporation, Santa Monica, CA, 1951.Google Scholar
  17. [17]
    Isaacs, R. P. Differential Games I: Introduction. Differential Games II: The Definition and Formulation. Differential Games III: The Basic Principles of the Solution Process. Differential Games IV: Mainly Examples. Memoranda # RM-1391, # RM-1399, # RM-1411 and # RM-1486. The RAND Corporation, Santa Monica, CA, 1954/55.Google Scholar
  18. [18]
    Isaacs, R. P. Differential Games—A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. John Wiley & Sons, NY, 1965. Robert E. Krieger, Huntington, NY, 1975 (3rd edition).zbMATHGoogle Scholar
  19. [19]
    Kühnen, M. A., E. Brühning, and A. Schepers. Unfallgeschehen auf Autobahnen - Strukturuntersuchung. Report of the Bundesanstalt für Straßenwesen # M50, Wirtschaftsverlag NW/Verlag für neue Wissenschaft, Bremerhaven, Germany, 1995.Google Scholar
  20. [20]
    Lachner, R. Echtzeitsynthese optimaler Strategien für Differentialspiele schneller Dynamik mit Anwendungen bei der Kollisionsvermeidung. Ph.D. Thesis, Clausthal University of Technology, Mathematical Institute, Clausthal-Zellerfeld, Germany, 1997.Google Scholar
  21. [21]
    Lachner, R., M. H. Breitner, and H. J. Pesch. Optimal Strategies of a Complex Pursuit-Evasion Game. Journal of Computing and Information, 4, 1994.Google Scholar
  22. [22]
    Lachner, R., M. H. Breitner, and H. J. Pesch. Three-Dimensional Air Combat Analysis—An Example for the Numerical Solution of Complex Differential Games. Annals of the International Society of Dynamic Games, 3, 1996.Google Scholar
  23. [23]
    Leshno, M., V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer Feedforward Networks with a Nonpolynomial Activation Function Can Approximate Any Function. Neural Networks, 6, 1993.Google Scholar
  24. [24]
    Lewin, J. Differential Games: Theory and Methods for Solving Game Problems with Singular Surfaces. Springer, London, UK, 1994.Google Scholar
  25. [25]
    Merz, A. W. The Homicidal Chauffeur—A Differential Game. Ph.D. thesis, Report No. 94305, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, 1971.Google Scholar
  26. [26]
    Miloh, T. The Game of Two Elliptical Ships. Optimal Control Applications & Methods, 4, 1983.Google Scholar
  27. [27]
    Miloh, T., and S. D. Sharma. Maritime Collision Avoidance as a Differential Game. Schiffstechnik, 24, 1977.Google Scholar
  28. [28]
    Miloh, T., and M. Pachter. Ship Collision Avoidance and Pursuit-Evasion Differential Games with Speed-Loss in a Turn. Computers and Mathematics with Applications, 18, 1989.Google Scholar
  29. [29]
    Pachter, M., and T. Miloh. The Geometric Approach to the Construction of the Barrier Surface in Differential Games. Computers and Mathematics with Applications, 13, 1987.Google Scholar
  30. [30]
    Pesch, H. J., I. Gabier, S. Miesbach, and M. H. Breitner. Synthesis of Optimal Strategies for Differential Games by Neural Networks. Annals of the International Society of Dynamic Games, 3, 1996.Google Scholar
  31. [31]
    Petrosjan, L. A. Differential Games of Pursuit. World Scientific, River Edge, NY, 1993.CrossRefGoogle Scholar
  32. [32]
    Scherer, A. Neuronale Netze—Grundlagen und Anwendungen. Vieweg, Wiesbaden 1996.Google Scholar
  33. [33]
    Shinar, J., and R. Tabak. New Results in Optimal Missile Avoidance Analysis. Journal of Guidance, Control & Dynamics, 17, 1994.Google Scholar
  34. [34]
    Siemens AG, M. H. Breitner and H. J. Pesch. Verfahren zur Kollisionsvermeidung von einem entgegenkommenden Fahrzeug und einem ausweichenden Fahrzeug mit Hilfe neuronaler Netze. German patent # 19534942,1995/1998.Google Scholar
  35. [35]
    Subbotin, A. I. Generalized Solutions of First-Order PDEs. Birkhäuser, Boston, MA, 1995.Google Scholar
  36. [36]
    Vincent, T. L. Collision Avoidance at Sea. In: P. Hagedorn, H. W Knobloch, and G. J. Olsder, (Eds.), Differential Games and Applications, Lecture Notes in Control and Information Sciences 3, Springer, Berlin, Germany, 1977.Google Scholar
  37. [37]
    Vincent, T. L., E. M. Cliff, W. J. Grantham, and W. Y. Peng. Some Aspects of Collision Avoidance. AIAA Journal, 12, 1974.Google Scholar
  38. [38]
    White, H., A. R. Gallant, K. Homik, M. Stinchcombe, and J. Wooldridge. Artificial Neural Networks—Approximation and Learning Theory. Blackwell, Oxford, UK, 1992.Google Scholar
  39. [39]
    White, D. A., and D. A. Sofge. Handbook of Intelligent Control—Neural, Fuzzy and Adaptive Approaches. Van Nostrand Reinhold, NY, 1992.Google Scholar
  40. [40]
    Zell, A. Simulation Neuronaler Netze. Addison-Wesley, Bonn, Germany, 1996.Google Scholar
  41. [41]
    Zell, A., et al. SNNS—Stuttgart Neural Network Simulator (Version 4.0): User Manual. Universität Stuttgart, Institut fur paralleles und verteiltes Hochleistungsrechnen, Stuttgart, Germany, 1995.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Rainer Lachner
    • 1
  • Michael H. Breitner
    • 1
  • H. Josef Pesch
    • 1
  1. 1.Institut für MathematikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations