Skip to main content

Deformable Porous Media and Composites Manufacturing

  • Chapter
Heterogeneous Media

Abstract

A growing number of industrial activities demands advanced materials that satisfy stringent requirements and lower costs. These requirements, which involve a combination of many properties, can often be satisfied by using a composite material, whose constituents act synergically to solve the needs of application. Modelling the behavior of such a heterogeneous material during its production is a very hard task, but it is very useful for the optimization of the manufacturing process itself. This chapter focuses on the deduction of mathematical models of deformable porous media and on their application to composite materials manufacturing as a first step toward the understanding of this complex process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hamdan, A., Rudd, C. D., and Long, A. C., Dynamic core movements during liquid moulding of sandwich structures, Composites A, 29 (1998), 273–282.

    Article  Google Scholar 

  2. Allaire, G., Homogenization of the Stokes flow in a connected porous medium, Asymptotic Anal., 2 (1989), 203–222.

    MathSciNet  MATH  Google Scholar 

  3. Ambrosi, D., and Preziosi, L., Modelling matrix injection through elastic porous preforms, Composites A, 29 (1998), 5–18.

    Article  Google Scholar 

  4. Ambrosi, D., and Preziosi, L., Modelling injection moulding processes with deformable porous preform, SIAM J. Appl. Math., submitted.

    Google Scholar 

  5. Antonelli, D., and Farina, A., Injection moulding: Modelling and numerical simulations, Composites A, submitted.

    Google Scholar 

  6. Atkin, R. J., and Craine, R. E., Continuum theories of mixtures: basic theory and historical development, Q. J. Mech. Appl. Math., 29 (1976), 209–244.

    Article  MathSciNet  MATH  Google Scholar 

  7. Atkin, R. J., and Craine, R. E., Continuum theories of mixtures: applications, J. Inst. Math. Appl., 17 (1976), 153–207.

    Article  MathSciNet  MATH  Google Scholar 

  8. Baranger, J., and Mikelic, A., Stationary solutions to a quasi-Newtonian flow with viscous heating, Math. Models Methods Appl. Sci., 5 (1995), 725–738.

    Article  MathSciNet  MATH  Google Scholar 

  9. Barker, M. K., and Seedhom, B. B., Articular cartilage deformation under physiological cycling loading, J. Biomech., 377–381(1997).

    Google Scholar 

  10. Bear, J., and Bachmat, Y., Introduction to Modelling of Transport Phenomena in Porous Media, Kluwer (1990).

    Google Scholar 

  11. Beavers, G. S., and Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197–207.

    Article  Google Scholar 

  12. Beavers, G. S., Wilson, T. A., and Masha, B. A., Flow through a deformable porous material, Trans. ASME E: J. Appl. Mech., 42 (1975), 598–602.

    Article  Google Scholar 

  13. Beavers, G. S., Wittemberg, K., and Saprrow, E. M., Fluid flow through a class of highly-deformable porous media. II. Experiments with water, J. Fluids Eng., 103 (1981), 440–444.

    Article  Google Scholar 

  14. Bedford, A., and Drumheller, D. S., Theory of immiscible and structured mixtures, Int. J. Eng. Sci., 21 (1983), 863–960.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bellomo, N., and Preziosi, L., Modelling Mathematical Methods and Scientific Computation, CRC Press (1995).

    Google Scholar 

  16. Bickerton, S., and Advani, S. G., Experimental investigation and flow visualization of the resin-transfer mold-filling process in a non-planar geometry, Compos. Sei. Tech., 57 (1997), 23–33.

    Article  Google Scholar 

  17. Billi, L., and Farina, A., Unidirectional infiltration in deformable porous media: Mathematical modelling and self-similar solution, Quart. Appl. Math., in press.

    Google Scholar 

  18. Blavier, E., and Mikelic, A., On the stationary quasi-Newtonian flow through porous medium, Math. Methods Appl. Sci., 18 (1995), 927–948.

    Article  MathSciNet  MATH  Google Scholar 

  19. de Boer, R., Highlights in the historical development of the porous media theory: Toward a consistent macroscopic theory, Appl. Mech. Rev., 49 (1996), 201–262.

    Article  Google Scholar 

  20. Bowen, R. M., Theory of mixtures, in Continuum Physics, Vol. 3, Eringen A. C., ed., Academic Press (1976).

    Google Scholar 

  21. Bowen, R. M., A theory of constrained mixtures with multiple temperatures, Arch. Rat. Mech. Anal., 70 (1979), 235–260.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bowen, R. M., Incompressible porous media model by use of the theory of mixtures, Int. J. Eng. Sci., 18 (1980), 1129–1148.

    Article  MATH  Google Scholar 

  23. Bruschke, M. V., and Advani, S. G., A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces, Int. J. Numer. Methods Fluids, 19 (1994), 575–603.

    Article  MATH  Google Scholar 

  24. Calado, V. M. A., and Advani, S. G., Effective average permeability of multi-layer preforms in resin transfer molding, Compos. Sci. Tech., 56, 519–531 (1996).

    Article  Google Scholar 

  25. Calhoun, D. R., Yalvaç, S., Wetters, D. G., Wu, C. H., Wang, T. J., Tsai, J. S., and Lee, L. J., Mold filling analysis in resin transfer molding, Polymer Compos., 17 (1996), 251–264.

    Article  Google Scholar 

  26. Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag (1988).

    Google Scholar 

  27. Challal, S., and Saint Jean Paulin, J., Study of the limit behavior of a viscoelastic medium with very small obstacles, Math. Models Methods Appl. Sci., 6 (1996), 227–244.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chui, W. K., Glimm, J., Tangerman, F. M., Jardine, A. P., Madsen, J. S., Donnellan, T. M., and Leek, R., Process modeling in resin transfer molding as a method to enhance product quality, SIAM Rev., 39 (1997), 714–727.

    Article  MathSciNet  Google Scholar 

  29. Clyne, T. W., and Mason, J. F., The squeeze infiltration process for fabrication of metal matrix composites, Metall. Trans. A, 18 (1987), 1519–1530.

    Article  Google Scholar 

  30. Couniot, A., Carlier, Th., Valembois, D., Ma1, O., and Dupret, F., Modeling and numerical simulation of the structural reaction injection moulding (SRIM) process, in Proceedings of the Third International Conference on Flow Processes in Composite Materials, University College Galway, Ireland, 7-9 July 1994.

    Google Scholar 

  31. Dai, F., Rajagopal, K.R., Diffusion of fluids through transversely isotropic solids, Acta Mech., 82 (1990), 61–98.

    Article  MATH  Google Scholar 

  32. Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Dalmont (1856).

    Google Scholar 

  33. Dusi, M. R., Lee, W. L., Ciriscioli, P. R., and Springer, G. S., Cure kinetics and viscosity of fiberite 976 resin, J. Composite Mater., 21 (1987), 234–261.

    Article  Google Scholar 

  34. Ene, H. L., On a thermodynamic theory of mixtures, Int. J. Eng. Sci., 19 (1981), 905–915.

    Article  MATH  Google Scholar 

  35. Ene, H. L., and Polisevski, D., Thermal Flow in Porous Media, Reidel (1987).

    Google Scholar 

  36. Ene, H. L., and Saint Jean Paulin, J., Homogenization and two-scale convergence for a Stokes or Navier-Stokes flow in an elastic thin porous medium, Math. Models Methods Appl. Sci., 6 (1996), 941–955.

    Article  MathSciNet  MATH  Google Scholar 

  37. Ene, H. I., and Sanchez-Palencia, E., Some thermal problems in flow through a periodic model of porous media, Int. J. Eng. Sci., 19 (1981), 117–127.

    Article  MATH  Google Scholar 

  38. Ene, H. I., and Sanchez-Palencia, E., On thermal equation for flow in porous media, Int. J. Eng. Sci., 20 (1982), 623–630.

    Article  MATH  Google Scholar 

  39. Farina, A., Modelling and Simulations of Fluid Dynamic Problems in Composite Materials Manufacturing, Ph.D. Thesis, Politecnico di Torino (1998).

    Google Scholar 

  40. Farina, A., and Preziosi, L., Free boundary problems in the production of composites, in Proceedings of the Conference Free Boundary Problems 97, Heraklion (Crete), June 1997, in press.

    Google Scholar 

  41. Farina, A., and Preziosi, L., Non-isothermal injection moulding with resin cure and preform deformability, Eur. J. Mech. B/Fluids, submitted.

    Google Scholar 

  42. Farina, A., and Preziosi, L., Infiltration processes in composite materials manufacturing: Modelling and qualitative results, in Complex Flows in Industrial Processes, Fasano A., ed., Birkhäuser (1999), in press.

    Google Scholar 

  43. Frijns A. J. H., Huyghe J. M., and Janssen, J. D., A validation of the quadriphasic mixture thory for intervertebral disc tissue, Int. J. Eng. Sci., 35 (1997), 1419–1429.

    Article  MATH  Google Scholar 

  44. Gandhi, M., Rajagopal, K. R., and Wineman, A. S., Some non-linear diffusion problems within the context of interacting continua, Int. J. Eng. Sci., 25 (1987), 1441–1457.

    Article  MATH  Google Scholar 

  45. Gandhi, M., Usman, M., Wineman, A. S., and Rajagopal, K. R., Combined extension and torsion of a swollen cylinder within the context of mixture theory, Acta Mech., 79 (1989), 81–95.

    Article  MATH  Google Scholar 

  46. Gawin, D., Baggio, P., and Schrefler, B. A., Coupled heat, water and gas flow in deformable porous media, Int. J. Numer. Methods Fluids, 20 (1995), 969–987.

    Article  MATH  Google Scholar 

  47. Gonzales-Romero, V. M., and Macosko, C. W., Process parameters estimation for structural reaction injection moulding and resin transfer moulding, Polymer Eng. Sci., 30 (1990), 142–146.

    Article  Google Scholar 

  48. Guild, F. J., and Summerscales, J., Microstructural image analysis applied to fiber composite materials: A review, Composites, 24 (1993), 383–393.

    Article  Google Scholar 

  49. Gutowski, T. G., A resin flow/fiber deformation model for composites, SAMPE Q., 16 (1985), 58–64.

    Google Scholar 

  50. Gutowski, T. G., Morigaki, T., and Cai, Z., The consolidation of laminate composites, J. Composite Mater., 21 (1987), 172–188.

    Article  Google Scholar 

  51. Hammami, A., Gauvin, R., and Trochu, F., Modeling the edge effect in liquid composites molding, Composites A, 29 (1998), 603–609.

    Article  Google Scholar 

  52. Han, K., Lee, L. J., and Liu, M. J., Fiber mat deformation in liquid composite moulding. II. Modeling, Polymer Compos., 14 (1993), 151–160.

    Article  Google Scholar 

  53. Han, K., Trevino, L., Lee, L. J., and Liu, M. J., Fiber mat deformation in liquid composite moulding. I. Experimental analysis, Polymer Compos., 14 (1993), 144–150.

    Article  Google Scholar 

  54. Hou, J. S., Holmes, M. H., Lai, W. M., and Mow, V. C., Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications, J. Biomech. Eng., 111 (1989) 78–87.

    Article  Google Scholar 

  55. Hornung, U., Homogenization and Porous Media, Springer (1997).

    Google Scholar 

  56. Isayev, A. I., Injection and Compression Moulding Fundamentals, Marcel Dekker (1987).

    Google Scholar 

  57. Jäger, W., and Mikelic, A., On the boundary conditions at the contact interface between a porous medium and a free fluid, Annali della Scuola Normale Superiore di Pisa, Serie VI, 23 (1996), 403–465.

    MATH  Google Scholar 

  58. Jayaraman, G., Water transport in the arterial wall. A theoretical study, J. Biomech., 16 (1983), 833–840.

    Article  Google Scholar 

  59. Joseph, D. D., and Lundgren, T., Ensemble average and mixture theory for incompressible fluid-particle suspensions, Int. J. Multiphase Flow, 16 (1990), 35–42.

    Article  MATH  Google Scholar 

  60. Kamal, M. R., and Sourour, S., Kinetics and thermal characterization of thermoset cure, Polymer Eng. Sci., 13 (1973), 59–64.

    Article  Google Scholar 

  61. Keller, J. B., Darcy’s law for flow in porous media and two-space method, in Nonlinear Partial Differential Equations in Engineering and Applied Sciences, Sternberg, R. L., ed., Dekker (1980).

    Google Scholar 

  62. Kendall, N. K., and Rudd, C. D., Flow and cure phenomena in liquid composite molding, Polymer Compos., 15 (1994), 334–348.

    Article  Google Scholar 

  63. Kenyon, D. E., Thermostatics of solid-fluid mixtures, Arch. Rat. Mech. Anal., 62 (1976), 117–129.

    MathSciNet  MATH  Google Scholar 

  64. Kenyon, D. E., The theory of an incompressible solid-fluid mixture, Arch. Rat. Mech. Anal, 62, 131–147 (1976).

    MathSciNet  MATH  Google Scholar 

  65. Kenyon, D. E., A mathematical model of water flux through aortic tissue, Bull. Math. Biol., 41, 79–90 (1979).

    MathSciNet  Google Scholar 

  66. Kim, Y. R., McCarthy, S. P., and Fanucci, J. P., Compressibility and relaxation of fiber reinforcements during composite processing, Polymer Compos., 12 (1991), 13–19.

    Article  Google Scholar 

  67. Klanchar, M., and Tarbell, J. M., Modelling water flow through arterial tissue, Bull. Math. Biol., 49 (1987), 651–661.

    MathSciNet  MATH  Google Scholar 

  68. Lancellotta, R., Geotechnical Engineering, Balkema (1995).

    Google Scholar 

  69. Lee, W.I., Loos, A.C., Springer, G.S., Heat reaction, degree of cure and viscosity of Hercules 3501-6 resin, J. Composite Mater., 16, 510–520 (1982).

    Article  Google Scholar 

  70. Lekakou, C., and Bader, M. G., Mathematical modelling of resin infiltration in resin transfer moulding (RTM), Proceedings of the Fourth International Conference on Flow Processes in Composite Materials, University of Wales Aberystwyth, UK, 9-11 September 1996.

    Google Scholar 

  71. Lekakou, C., Johari, M. A. K. B., and Bader, M. G., Compressibility and flow permeability of two dimensional woven reinforcements in the processing of composites, Polymer Compos., 17 (1996), 666–672.

    Article  Google Scholar 

  72. Lewis, R. W., and Schrefler, B. A., The Finite Element Method in the Deformation and Consolidation of Porous Media, Wiley (1987).

    Google Scholar 

  73. Lin, M., Hahn, H. T., and Huh, H., A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration, Composites A, 29 (1998), 541–550.

    Article  Google Scholar 

  74. Lin, R. J., Lee, L. J., and Liou, M. J., Non-isothermal mold filling and curing simulation in thin cavities with preplaced fiber mats, Int. Polymer Process., 6 (1991), 356–369.

    Google Scholar 

  75. Lin, R. J., Lee, L. J., and Liou, M. J., Mold filling and curing analysis in liquid composite molding, Polymer Compos., 14 (1993), 71–81.

    Article  Google Scholar 

  76. Lions, J. L., Some Methods in the Mathematical Analysis of Systems and their Control, Science Press (1981).

    Google Scholar 

  77. Lipton, R., and Avellaneda, A., A Darcy law for slow viscous flow past a stationary array of bubbles, Proc. Roy. Soc. Edinb. A, 114 (1990), 71–79.

    Article  MathSciNet  MATH  Google Scholar 

  78. Lipton, R., Vernescu, B., Variational methods, size effects and extremal microgeometries for elastic composites with impefect interface, Math. Models Methods Appl. Sci., 5, 1139–1173 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  79. Liu, B., Bickerton, S., and Advani, S. G., Modelling and simulation of resin transfer moulding (RTM)-gate control, venting and dry spot prediction, Composites A, 27, 135–141 (1996).

    Article  Google Scholar 

  80. Liu, I.S., On chemical potential and incompressible porous media, J. Mec. 19, 327–342 (1980).

    Google Scholar 

  81. Long, S., Zhang, Z., Flower, H.M., Hydrodynamics analysis of liquid infiltration of unidirectional fiber arrays by squeeze casting, Acta Metall. Mater., 42, 1389–1397 (1994).

    Article  Google Scholar 

  82. Long, S., Zhang, Z., Flower, H.M., Characterization of liquid metal infiltration of a chopped fiber preform aided by external pressure. II. Modelling of liquid metal infiltration process, Acta Metall. Mater., 43, 3499–3509 (1995).

    Article  Google Scholar 

  83. Macosko, C. W., Fundamentals of Reaction Injection Moulding, Hanser (1989).

    Google Scholar 

  84. Mai, O., Couniot, A., Dupret, F., Non-isothermal simulation of the structural reaction injection moulding process, in Proceedings of the Fourth International Conference on Flow Processes in Composite Materials, University of Wales Aberystwyth, UK, 9-11 September 1996.

    Google Scholar 

  85. Mallik, P. K., Fiber-Reinforced Composites: Materials Manufacturing and Design, Marcel Dekker (1988).

    Google Scholar 

  86. Marusic, S., Low concentration for a fluid flow through a filter, Math. Models Methods Appl. Sci., 8, 623–643 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  87. Mikelic, A., and Primicerio, M., Homogenization of heat conduction in materials with periodic inclusions of perfect conductor, in Progress in PDE’s, Calculus of Variations and Applications, Pitman Res. Notes in Math. 267, Chipot, M. et al., eds., Pitman (1992).

    Google Scholar 

  88. Mikelic, A., and Primicerio, M., Homogenization of the heat equation for a domain with a network of pipes with a well mixed fluid, Ann. Mat. Pura Appl. (IV), CLXVI (1994), 227–251.

    Article  MathSciNet  Google Scholar 

  89. Mortensen, A., and Cornie, J. A., On the infiltration of metal matrix composites, Metall. Trans. A, 18 (1987), 1160–1163.

    Article  Google Scholar 

  90. Mow, V., and Lai, W. M., Mechanics of animal joints, Ann. Rev. Fluid Mech., 11 (1979), 247–288.

    Article  Google Scholar 

  91. Mow, V. C., Holmes, M. H., and Lai, W. M., Fluid transport and mechanical problems of articular cartilage: a review. J. Biomech. Eng., 17 (1984), 377–394.

    Article  Google Scholar 

  92. Mow V. C., Kuei, S. C., Lai, W. M., and Armstrong, C. G., Biphasic creep and stress relaxation of articular cartilage: Theory and experiment, J. Biomech. Eng., 102 (1980), 73–84.

    Article  Google Scholar 

  93. Müller, I., A thermodynamic theory of mixture of fluids, Arch. Rat. Mech. Anal., 28, 1–39 (1968).

    Article  MATH  Google Scholar 

  94. Müller, I., Thermodinamik, die Grundlagen der Material-Theorie, Bertelsmann Universitäs-Verlag (1973).

    Google Scholar 

  95. Müller, I., Thermodynamics of mixture of fluids, J. Mec., 14 (1975), 267–303.

    MATH  Google Scholar 

  96. Müller, L., Rational Thermodynamics of mixtures of fluids, in Thermodynamic and Constitutive Equations, Lecture Notes in Physics 228, Grioli, G., ed., Springer-Verlag (1985).

    Google Scholar 

  97. Munaf, D., Wineman, S., Rajagopal, K. R., and Lee, D. W., A boundary value problem in ground water motion analysis — Comparison of the prediction based on Darcy’s law and the continuum theory of mixtures. Math. Models Methods Appl. Sci., 3 (1993), 231–248.

    Article  MathSciNet  MATH  Google Scholar 

  98. Nam, J. D., Seferis, J. C., Kim, S. W., and Lee, K. J., Gas permeation and viscoelastic deformation of prepregs in composite manufacturing processes, Polymer Compos., 16 (1995), 370–377.

    Article  Google Scholar 

  99. Nicholson, C., Diffusion from an injected volume of a substance in brain tissues with arbitrary volume fraction and tortuosity, Brain Res., 333 (1985), 325–329.

    Article  Google Scholar 

  100. Ogden, R. W., Non-Linear Elastic Deformation, Ellis Horwood (1984).

    Google Scholar 

  101. Owen, M. J., Middleton, V., and Rudd, C. D., Fiber reinforcement for high volume resin transfer moulding (RTM), Compos. Manuf., 1 (1990), 74–78.

    Article  Google Scholar 

  102. Parkinson, J., Brass, A., Canova, G., and Brechet, Y., The mechanical properties of simulated collagen fibrils, J. Biomech., 30 (1997), 549–554.

    Article  Google Scholar 

  103. Parnas, R. S., Salem, A. J., Sadiq, T. A. K., Wang, H. P., and Advani, S. G., The interaction between micro and macroscopic flow in RTM preforms, Compos. Struct., 27, 93–107 (1994).

    Article  Google Scholar 

  104. Phillips, R., Akyuz, A. A., and Manson, J. A. E., Prediction of the woven fiber-reinforced thermoplastic composites. Part I. Isothermal case, Composites A, 29 (1998), 395–402.

    Article  Google Scholar 

  105. Pillai, K. M., and Advani, S. G., Numerical and analytical study to estimate the effect of two length scales upon the permeability of a fibrous porous medium, Transport in Porous Media, 21 (1995), 1–17.

    Article  Google Scholar 

  106. Please, C. P., Pettet, G. J., and McElwain, D. L. S., A new approach to modelling the formation of necrotic regions in tumors, Appl. Math. Letters, 11 (1998), 89–94.

    Article  MATH  Google Scholar 

  107. Plyatiskii, V. M., Extrusion Casting, Primary Sources (1965).

    Google Scholar 

  108. Preziosi, L., The theory of deformable porous media and its applications to composite material manufacturing, Surv. Math. Ind., 6 (1996), 167–214.

    MathSciNet  MATH  Google Scholar 

  109. Purslow, D., and Child, R., Autoclave moulding of carbon-fiber reinforced epoxies, Composites, 17 (1986), 127–136.

    Article  Google Scholar 

  110. Quarteroni, A., and Valli, A., Domain Decomposition for Partial Differential Equations, Oxford University Press (1999).

    Google Scholar 

  111. Rajagopal, K. R., Shi, J. J., and Wineman, A. S., The diffusion of a fluid through a highly elastic spherical membrane, Int. J. Eng. Sci., 21 (1983), 1171–1183.

    Article  MATH  Google Scholar 

  112. Rajagopal, K. R., and Tao, L., Mechanics of Mixtures, World Scientific (1995).

    Google Scholar 

  113. Rajagopal, K. R., Wineman, A. S., and Gandhi, M. V., On boundary conditions for a certain class of problems in mixture theory, Int. J. Eng. Sci., 24 (1986), 1453–1463.

    Article  MathSciNet  MATH  Google Scholar 

  114. Reboredo, M. M., and Rojas, A. J., Molding by reactive injection of reinforced plastics, Polymer Eng. Sci., 28 (1988), 485–490.

    Article  Google Scholar 

  115. Rudd, C. D., and Kendall, N. K., Towards a manufacturing technology for high-volume production of composites components, Proc. Inst. Mech. Eng., 206 (1992), 77–91.

    Google Scholar 

  116. Rudd, C. D., Long, A. C., McGeehin, P., Cucinella, F., and Bulmer, L. J., Processing and mechanical properties of bidirectional preforms for liquid composite moulding, Compos. Manul., 6 (1995), 211–219.

    Article  Google Scholar 

  117. Rudd, C. D., Long, A. C., McGeehin, P., and Smith, P., In-plane permeability determination for simulation of liquid composite molding of complex shapes, Polymer Compos., 17 (1996), 52–59.

    Article  Google Scholar 

  118. Rudd, C. D., Long, A. C., Kendall, K. N., and Mangin, C. G. E., Liquid Moulding Technologies, Woodhead Publishing Limited (1997).

    Google Scholar 

  119. Rudd, C. D., Owen, M. J., and Middleton, V., Effects of process variables on cycle time during resin transfer moulding for high volume manufacture, Mater. Sci. Tech., 6 (1990), 656–665.

    Article  Google Scholar 

  120. Saffman, P. G., On the boundary condition at the interface of a porous medium, Studies in Appl. Math., 1 (1971), 93–101.

    Google Scholar 

  121. Saunders, R. A., Lekakou, C., and Bader, M. G., Compression and microstructure of fiber plain woven cloths in the processing of polymer composites, Composites A, 29 (1998), 443–454.

    Article  Google Scholar 

  122. Schwartz, L., Méthodes Mathématiques pour le Science Physique, Herman (1961).

    Google Scholar 

  123. Simacek, P., and Advani, S. G., Permeability model for woven fabric, Polymer Compos., 17 (1996), 887–899.

    Article  Google Scholar 

  124. Sommer, J. L., and Mortensen, A., Forced unidirectional infiltration of deformable porous media, J. Fluid. Mech., 311 (1996), 193–215.

    Article  Google Scholar 

  125. Sorek, S., and Sideman, S., A porous medium approach for modelling heart mechanics: I. Theory, Math. Biosci., 81 (1986), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  126. Sourour, S., and Kamal, M. R., Differential scanning calorimetry of epoxy cure: Isothermal cure kinetics, Thermodyn. Acta, 14 (1976), 41–59.

    Article  Google Scholar 

  127. Tao, L., and Rajagopal, K. R., Unsteady diffusion of fluids through a non-linearly elastic cylinder annulus, Int. J. Nonlinear Mech., 28 (1993), 43–55.

    Article  MATH  Google Scholar 

  128. Tao, L., and Rajagopal, K. R., On boundary conditions in mixture theory, in Recent Advances in Elasticity and Viscoelasticity, Rajagopal, K. R., ed., World Scientific (1994).

    Google Scholar 

  129. Tao, L., Rajagopal, K. R., and Wineman, A. S., Unsteady diffusion of fluids through solids undergoing large deformations, Math. Models Methods Appl. Sci., 1 (1991), 311–346.

    Article  MathSciNet  MATH  Google Scholar 

  130. Tartar, L., Incompressible fluid flow in a porous medium— convergence of the homogenization process, in Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 129, Sanchez-Palencia, E., ed., Springer-Verlag (1980).

    Google Scholar 

  131. Terzaghi, K., Die Bechnung der durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungser-scheinungen, Sitzungsbehrichte Akad. Wissen. Wien, Mathem. Naturw. Kl., IIa 132 (1923), 125–138.

    Google Scholar 

  132. Torquato, S., Thermal conductivity of disordered heterogeneous media from the microstructure, Rev. Chem. Eng., 4 (1987), 151–204.

    Article  Google Scholar 

  133. Trevino, L., Rupel, K., Young, W. B., Liu, M. J., and Lee, L. J., Analysis of resin injection moulding in moulds with pre-placed fiber mats. I. Permeability and compressibility measurements, Polymer Compos., 12 (1991), 20–29.

    Article  Google Scholar 

  134. Truesdell, C., Sulle basi della termomeccanica, Rend. Lincei, 22 (1957), 33–38.

    MathSciNet  MATH  Google Scholar 

  135. Truesdell, C., Sulle basi della termomeccanica, Rend. Lincei, 22 (1957), 158–156.

    MathSciNet  Google Scholar 

  136. Truesdell, C., and Toupin, R. A., The classical field theory, in Handbuck der Phisik, Vol III/1, Flügge S., ed., Springer-Verlag (1960).

    Google Scholar 

  137. Upadhyay, R. K., and Liang, E. W., Consolidation of advanced composites having volatile generation, Polymer Compos., 12, 417–429 (1991).

    Article  Google Scholar 

  138. Vankan, W. J., Huyghe, J. M., Janssen, J. D., Huson, A., Hacking, W. J. G., and Schreiner, W., Finite element analysis of blood flow through biological tissue, Int. J. Eng. Sci., 35 (1997), 375–385.

    Article  MATH  Google Scholar 

  139. Vladimirov, V. S., Equations of Mathematical Physics, MIR (1984). (In Russian.)

    Google Scholar 

  140. Ward, J. P., and King, J. R., Mathematical modelling of avascular tumor growth, IMA J. Math. Appl. Med. Biol., to appear (1999).

    Google Scholar 

  141. Whitaker, S., Advances in the theory of fluid motion in porous media, Ind. Eng. Chem., 61 (1969), 14–28.

    Article  Google Scholar 

  142. Wissler, E. H., Viscoelastic effects in the flow of non-Newtonian fluids through a porous medium, Ind. Eng. Chem. Fundam., 10 (1971), 411–417.

    Article  Google Scholar 

  143. Wu, J. Z., and Epstein, M., An improved solution for the contact of two biphasic cartilages layers, J. Biomech., 30 (1997), 371–375.

    Article  Google Scholar 

  144. Yamauchi, T., and Nishida, Y., Infiltration kinetics of fibrous preforms by aluminum with solidification, Acta Metall. Mater., 43 (1995), 1313–1321.

    Article  Google Scholar 

  145. Yang, M., Taber, L. A., and Clark, E. B., A non-linear poroelasticity model for the trabecular embrionic heart, J. Biomech. Eng., 116 (1994), 213–223.

    Article  Google Scholar 

  146. Yoo, Y. E., and Lee, W. I., Numerical simulation of the resin transfer mold filling process using the boundary element method, Polymer Compos., 17 (1996), 368–374.

    Article  Google Scholar 

  147. Young, W.B., The effect of surface tension on tow impregnation of unidirectional fibrous preform in resin transfer moulding, J. Composite Materials, 30 (1996), 1191–1209.

    Article  Google Scholar 

  148. Young, W. B., Rupel, K., Han, K., Lee, L. J., and Liu, M. J., Analysis of resin injection moulding in moulds with pre-placed fiber mats. II. Numerical simulations and experiments of mould filling, Polymer Compos., 12 (1991), 30–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farina, A., Preziosi, L. (2000). Deformable Porous Media and Composites Manufacturing. In: Markov, K., Preziosi, L. (eds) Heterogeneous Media. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1332-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1332-1_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7098-0

  • Online ISBN: 978-1-4612-1332-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics