Skip to main content

Elementary Micromechanics of Heterogeneous Media

  • Chapter

Abstract

The introductory and more elementary ideas and results of micromechanics of heterogeneous media are collected in the survey. The central problem under discussion is “homogenization.” It replaces such media by homogeneous ones, which behave macroscopically in the same way and possess certain gross effective properties. These properties are related in a complicated manner to the prescribed internal structure of the medium and their evaluation, in general, represents a profound challenge in any specific situation. A brief historical survey is given, underlying the reappearance of essentially the same “homogenization” quest in numerous guises and contexts over the last two centuries. Within the framework of the volume-averaging approach the basic notions are introduced and some of the central, now classical, results are then derived and discussed such as perturbation expansions, Hashin-Shtrikman’s bounds, variational estimates and Levin’s cross-property relation. A general “one-particle” scheme for approximate evaluation of the effective properties (in the static case) is detailed in its various implementations like selfconsistency, iterated limits and effective field. Illustrations concern conductivity, elasticity, and absorption phenomena in heterogeneous particulate media, as well as a simple self-consistent model for polycrystals’ homogenization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archie, G. E., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME (Am. Inst. Min. Metall. Eng.), 146 (1942), 54–67.

    Google Scholar 

  2. Arnold, D. H., The mécanique physique of Siméone Denis Poisson: The evolution and isolation in France of his approach to physical theory. VI. Elasticity: The crystallization of Poisson’s views on the nature of matter, Archive History Exact Sci., 28 (1983), 343–367.

    Google Scholar 

  3. Avellaneda, M., Iterated homogenization, differential effective medium theory and applications, Commun. Pure Appl. Math., 40 (1987), 527–554.

    MathSciNet  MATH  Google Scholar 

  4. Baker, G. A., Jr., and Graves-Morris, P., Padé Approximants. Part I. Basic Theory. Part II. Extensions and Applications, Addison-Wesley, Reading, Massachusetts (1981).

    Google Scholar 

  5. Bensoussan, A., Lions, J. L., and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, North-Holland (1978).

    Google Scholar 

  6. Benveniste, Y., The effective mechanical behavior of composite materials with imperfect contact between the constituents, Mech. Materials, 4(1985), 197–208.

    Google Scholar 

  7. Benveniste, Y., On the Mori-Tanaka’s method in cracked bodies, Mech. Res. Commun., 13 (1986), 193–201.

    MATH  Google Scholar 

  8. Benveniste, Y., A new approach to the application of the MoriTanaka’s theory in composite materials, Mech. Materials, 6 (1987), 147–157.

    Google Scholar 

  9. Benveniste, Y., Dvorak, G. J., and Chen, T., On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, J. Mech. Phys. Solids, 39 (1991), 927–946.

    MathSciNet  MATH  Google Scholar 

  10. Benveniste, Y., and Miloh, T., The effective conductivity of composites with imperfect contact at constituent interfaces, Int. J. Eng. Science, 24 (1986), 1537–1552.

    MATH  Google Scholar 

  11. Beran, M., Use of a variational approach to determine bounds for the effective permittivity of a random medium, Nuovo Cimento, 38 (1965), 771–782.

    Google Scholar 

  12. Beran, M., Bounds on field fluctuations in a random medium, J. Appl. Phys., 39 (1968), 5712–5714.

    Google Scholar 

  13. Beran, M., Statistical Continuum Theories, John Wiley, New York (1968).

    MATH  Google Scholar 

  14. Beran, M., and Molyneux, J., Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous medium, Q. Appl. Math., 24 (1966), 107–118.

    MATH  Google Scholar 

  15. Bergman, D. J., The dielectric constant of a composite material-a problem in classical physics. Phys. Reports, 43C (1978), 377–407.

    MathSciNet  Google Scholar 

  16. Bergman, D. J., Analytical properties of the complex dielectric constant of a composite medium with applications to the derivation of rigorous bounds and to percolation problems, in Electrical transport and optical properties of inhomogeneous media, AIP Conf. Proc. No. 40, Garland, J. C. and Tanner, D. B., eds., Am. Inst. Phys., New York (1978), 46–61.

    Google Scholar 

  17. Berryman, J. G., Long-wavelength propagation in composite elastic media. I. Spherical inclusions. II. Ellipsoidal inclusions, J. Acoust. Soc. Am., 68 (1980), 1809–1819, 1820-1831.

    MATH  Google Scholar 

  18. Berryman, J. G., Single-scattering approximations for coefficients in Biot’s equations of poroelasticity, J. Acoust. Soc. Am., 91 (1992), 551–571.

    Google Scholar 

  19. Berryman, J. G., and Berge, P. A., Critique of two explicit schemes for estimating elastic properties of multiphase composites, Mech. Materials, 22 (1996), 149–164.

    Google Scholar 

  20. Bobeth, M., and Diener, G., Field fluctuations in multicomponent mixtures. J. Mech. Phys. Solids, 34 1–17, 1986.

    MATH  Google Scholar 

  21. Brailsford, A. D., and Bullough, R., The theory of sink strengths, Philos. Trans. Roy. Soc. Loud. A, 302 (1981), 87–137.

    Google Scholar 

  22. Brinkman, H. C., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20 (1952), 571.

    Google Scholar 

  23. Bristow, J. R., Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals, British J. Appl Physics, 11 (1960), 81–85.

    Google Scholar 

  24. Brown, W. F., Solid mixture permittivities, J. Chem. Phys., 23 (1955), 1514–1517.

    Google Scholar 

  25. Brown, W. F., Dielectrics, in Encyclopedia of Physics, vol. XII, Flügge, D., ed., Springer-Verlag, Berlin-Götingen-Heidelberg (1956), 1–154.

    Google Scholar 

  26. Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielectrizität-konstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Physik Leipzig, 24 (1935), 636–679.

    Google Scholar 

  27. Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die Elastische Konstanten der Quasiisotropen Mischkörper aus isotropen Substanzen, Ann. Physik Leipzig, 29 (1937), 160–178.

    Google Scholar 

  28. Budiansky, B., On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids, 13 (1965), 223–227.

    Google Scholar 

  29. Budiansky, B., and O’Connell, R., Elastic moduli of a cracked solid, Int. J. Solids Structures, 12 (1976), 81–97.

    MATH  Google Scholar 

  30. Calef, D. F., and Deutch, J. M., Diffusion-controlled reactions, Ann. Rev. Phys. Chem., 34 (1983), 493–523.

    Google Scholar 

  31. Chaban, L. A., Self-consistent field approach to calculation of effective parameters of microinhomogeneous media, Sov. Phys.-Acous., 10 (1964), 298–304.

    MathSciNet  Google Scholar 

  32. Cherkaev, A. V., Lurie, K. A., and Milton, G. W., Invariant properties of the stress in plane elasticity and equivalence classes of composites, Proc. Roy. Soc. A, 438 (1992), 519–529.

    MathSciNet  MATH  Google Scholar 

  33. Chiew, Y. C., and Glandt, E. D., Effective conductivity of dispersions: The effect of resistance at particle interfaces, Chem. Eng. Sci., 42 (1987), 2677–2685.

    Google Scholar 

  34. Christensen, R. C., Mechanics of Composite Materials, John Wiley, New York (1979).

    Google Scholar 

  35. Christensen, R. C., and Loo, L. K., Solution for effective shear properties in three phase and cylinder models, J. Mech. Phys. Solids, 27 (1979), 315–330.

    MATH  Google Scholar 

  36. Christiansson, H., and Helsing, J., Poisson’s ratio of fiberreinforced composites, J. Appl. Phys., 79 (1996), 7582–7585.

    Google Scholar 

  37. Clausius, R., Die mechanische Behandlung der Elektricität, Vieweg, Braunshweig (1879).

    Google Scholar 

  38. Cleary, M. P., Chen, I. W., and Lee, S. M., Self-consistent techniques for heterogeneous solids, ASCE Journal Eng. Mechanics, 106 (1987), 861–887.

    Google Scholar 

  39. Corson, P. B., Correlation functions for predicting properties of heterogeneous materials. IV. Effective thermal conductivity of two-phase solids, J. Appl. Phys., 45 (1974), 3180–3182.

    Google Scholar 

  40. Darcy, H., Les Fountaines Publiques de la Ville de Dijon, Victor Dalmont, Paris (1856).

    Google Scholar 

  41. Davies, W. E. A., The theory of elastic composite materials, J. Phys. D, 4 (1971), 1325–1339.

    Google Scholar 

  42. de Araujo, F. F.T., and Rosenberg, H. M., The thermal conductivity of epoxy-resin/metal-powder composite materials from 1.7 to 300 K, J. Phys. D, 9 (1976), 665–675.

    Google Scholar 

  43. Dewey, J. M., The elastic constants of materials loaded with non-rigid fillers, J. Appl. Phys., 18 (1947), 578–586.

    Google Scholar 

  44. Drugan, W. J., and Willis, J. R., A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, 44 (1996), 497–524.

    MathSciNet  MATH  Google Scholar 

  45. Ebert, L. J., and Wright, P. K., Mechanical aspects of interphases, in Composite Materials, Vol. 1, Metcalfe, A. G. ed., Academic Press, New York (1974), 42–76.

    Google Scholar 

  46. Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Physik, 19 (1905), 289–306.

    Google Scholar 

  47. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London A, 241 (1957), 376–396.

    MathSciNet  MATH  Google Scholar 

  48. Every, A. G., Tzou, Y., Hasselman, D. P. H., and Raj, R., The effect of particle size on the thermal conductivity of ZnS/Diamond composites, Acta Metall. Mater., 40 (1992), 123–129.

    Google Scholar 

  49. Faraday, M., Experimental researches on electricity, Phil. Trans. Roy. Soc. London, II Ser. (1838), page 1ff.

    Google Scholar 

  50. Felderhof, B. U., and Deutch, J. M., Concentration dependence of the rate of diffusion-controlled reactions, J. Chem. Phys., 64 (1976), 4551–4558.

    Google Scholar 

  51. Ferrari, M., Asymmetry and the high concentration limit of the mori-tanaka effective medium theory, Mech. Materials, 11:251–256, 1991.

    Google Scholar 

  52. Feynman, R. P., Leighton, R. B., and Sands, M., The Feynman lectures on physics, vol. 2, Addison-Wesley, Reading, Massathussets (1964).

    Google Scholar 

  53. Foldy, L. L., The multiple scattering of waves, Phys. Rev., 67 (1945), 107–119.

    MathSciNet  MATH  Google Scholar 

  54. Fricke, H., A mathematical treatment of the electric conductivity and capacity of disperse systems. I. The electric conductivity and capacity of disperse systems, Phys. Revue, 24 (1924) 575–587.

    Google Scholar 

  55. Frisch, H. L., Statistics of random media, Trans. Soc. Rheology, 9 (1965), 293–312.

    Google Scholar 

  56. Frisch, U., Wave propagation in random media, in Probabilistic Methods in Applied Mathematics, vol. 1, harucha-Reid, A. T., ed., Academic Press, New York and London, (1968), 75–198.

    Google Scholar 

  57. Frölich, H., and Sack, R., Theory of the rheological properties of dispersions, Proc. R. Soc. London A, 185 (1946), 415–430.

    Google Scholar 

  58. Gambin, B., and Kröner, E., Convergence problems in the theory of random elastic media, Int J. Eng. Sci., 19 (1981), 313–318.

    MATH  Google Scholar 

  59. Golden, K., and Papanicolaou, G., Bounds for effective properties of heterogeneous media by analytic continuation, Comm. Math. Phys., 90 (1983), 473–491.

    MathSciNet  Google Scholar 

  60. Grabovsky, Yu., and Milton, G. W., Exact relations for composites. Towards a complete solution, Documenta Math., Extra Volume ICM 1998 (1998), 1–10.

    MathSciNet  Google Scholar 

  61. Gubernatis, J. E., and Krumhansl, J. A., Microscopic engineering properties of polycrystalline materials: Elastic properties, J. Appl. Phys., 46 (1975), 1875–1883.

    Google Scholar 

  62. Happel, J., and Brenner, H., Low Reynolds Number Hydrodynamics, Prentice-Hall (1965).

    Google Scholar 

  63. Hartree, D. R., The wave mechanics of an atom with non-coulomb central field. II. Some results and discussion, Proc. Camb. Phil. Soc., 24 (1928), 111ff.

    Google Scholar 

  64. Hashin, Z., The moduli of an elastic solid reinforced by rigid particles, Bull. Res. Counc. Israel, 5C (1955), 46–59.

    Google Scholar 

  65. Hashin, Z., The moduli of an elastic solid, containing spherical particles of another elastic material, in Nonhomogeneity in Elasticity and Plasticity, Olszak, W., ed., Pergamon Press, Oxford (1959), 463–478.

    Google Scholar 

  66. Hashin, Z., The elastic moduli of heterogeneous materials, ASME J. Appl. Mech., 29 (1962), 143–150.

    MathSciNet  MATH  Google Scholar 

  67. Hashin, Z., Theory of mechanical behavior of heterogeneous solids, Appl. Mech. Reviews, 17 (1963), 1–9.

    Google Scholar 

  68. Hashin, Z., Assessment of the self-consistent scheme approximation: Conductivity of particiulate composites, J. Composite Materials, 2 (1968), 284–300.

    Google Scholar 

  69. Hashin, Z., Theory of Fiber Reinforced Materials, NASA CR-1974 (1972).

    Google Scholar 

  70. Hashin, Z., Analysis of composite materials-a survey, J. Appl. Mech., 50 (1983), 481–505.

    MATH  Google Scholar 

  71. Hashin, Z., The differential scheme and its application to cracked materials, J. Mech. Phys. Solids, 36 (1988), 719–734.

    MathSciNet  MATH  Google Scholar 

  72. Hashin, Z., and Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity, J. Mech. Phys. Solids, 10 (1962), 335–342.

    MathSciNet  Google Scholar 

  73. Hashin, Z., and Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33 (1962), 3125–3131.

    MATH  Google Scholar 

  74. Hashin, Z., and Shtrikman, S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11 (1963), 127–140.

    MathSciNet  MATH  Google Scholar 

  75. Hashin, Z., and Rosen, B., The elastic moduli of fiber-reinforced materials, Trans. ASME, J. Appl. Mech., 31 (1964), 223–235.

    Google Scholar 

  76. Hasselman, D. P. H., and Johnson, L. F., Effective thermal conductivity of composites with interfacial thermal barrier, J. Composite Materials, 21 (1987), 505–512.

    Google Scholar 

  77. Hasselman, D. P. H., Donaldson, K. Y., and Thomas, J. R. Jr., Effective thermal conductivity of uniaxial composite with cylindrically orthtropic carbon fibers and interfacial thermal barrier, J. Composite Materials, 27 (1993) 637–644.

    Google Scholar 

  78. Heney, F. S., and Pomphrey, N., Self-consistent elastic moduli of a cracked solid, Geophys. Res. Lett., 9 (1982), 903–906.

    Google Scholar 

  79. Hershey, A. V., The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., 21 (1954), 236–240.

    MATH  Google Scholar 

  80. Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. A, 65 (1952), 349–354.

    Google Scholar 

  81. Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11 (1963), 357–362.

    MATH  Google Scholar 

  82. Hill, R., Theory of mechanical properties of fibre-strengthened materials. I. Elastic behavior, J. Mech. Phys. Solids, 12 (1964), 199–212.

    MathSciNet  Google Scholar 

  83. Hill, R., Theory of mechanical properties of fibre-strengthened materials. III. Self-consistent model, J. Mech. Phys. Solids, 13 (1965), 189–198.

    Google Scholar 

  84. Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13 (1965), 213–222.

    Google Scholar 

  85. Hori, M., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. I. Perturbation expansions for the effective permittivity of cell materials, J. Math. Phys., 14 (1973), 514–523.

    MATH  Google Scholar 

  86. Hori, M., and Yonezawa, F., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. III. Perturbation treatment of the effective permittivity in completely random heterogeneous materials, J. Math. Phys., 15 (1974), 2177–2185.

    Google Scholar 

  87. Hori, M., and Yonezawa, F., Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. IV. Effective-medium theory and cumulant expansion method, J. Math. Phys., 16 (1975), 352–364.

    Google Scholar 

  88. Hughes, B. D., and Prager, S., Random processes and random systems. An introduction, in The Mathematics and Physics of Disordered Media, Hughes, B. D., and Ninham, B. W., eds., Lecture Notes in Mathematics, vol. 1035 (1983), 1–108.

    Google Scholar 

  89. Jeffrey, D. J., Conduction through a random suspension of spheres, Proc. Roy. Soc. London, A335 (1973) 355–367.

    Google Scholar 

  90. Jennings, B. R., and Parslow, K., Partcicle size measurement: The equivalent spherical diameter, Proc. R. Soc. Lond. A, 419 (1988), 137–149.

    Google Scholar 

  91. Jeulin, D., Bounds of physical properties of some random structures models, in Continuum Models and Discrete Systems, Inan, E., and Markov, K. Z., eds., World Sci. (1998), 147–154.

    Google Scholar 

  92. Kachanov, M., Effective elastic properties of cracked solids: critical review of some basic concepts, Appl. Mech. Review 45 (1992), 304–335.

    Google Scholar 

  93. Kanaun, S. K., On singular models of a thin inclusion in a homogeneous elastic medium, Appl. Math. Mechanics ( PMM), 48(1) (1984), 81–91. (In Russian.)

    Google Scholar 

  94. Kanaun, S. K., and Kudrjavtseva, L. T., Temperature stresses in the composites with spherically layered inclusions, MTT (Mechanics of Solids), No 4 (1987), 113–121. (in Russian.)

    Google Scholar 

  95. Kanaun, S. K., Kudrjavtseva, L. T., and Goldman, A. Y., Anomalous behavior of the viscoelastic properties of some polymer composites, Mechanics of Composite Materials, No 3 (1988), 442–448. (in Russian.)

    Google Scholar 

  96. Kanaun, S. K., and Levin, V. M., Effective Field Method in the Mechanics of Composite Materials, Petrozavodsk University (1993). (in Russian.)

    Google Scholar 

  97. Kanaun, S. K., and Levin, V. M., Effective field method in mechanics of matrix composite materials, in Recent Advances in Mathematical Modelling of Composite Materials, Markov, K. Z., ed., World Sci. (1994), 1–58.

    Google Scholar 

  98. Kapitza, P. L., Collected Papers, Vol. 2, ter Haar, D., ed., Pergamon Press, Oxford, 2nd edition (1965).

    Google Scholar 

  99. Kerner, E. H., The electrical conductivity of composite media, Proc. Phys. Soc. B, 59 (1956), 802–807.

    Google Scholar 

  100. Kirkpatrick, S., Percolation and conductivity, Rev. Mod. Phys., 45 (1973), 574–588.

    Google Scholar 

  101. Kohler, W. E., and Papanicolaou, G. C., Some applications pf the coherent potential approximation, in Multiple Scattering and Waves in Random Media, Chow, P. L. et al., eds., North-Holland, New York and Oxford (1981), 199–223.

    Google Scholar 

  102. Kraichnan, R. H., The closure problem in turbulence theory, in Proc. Symp. Appl. Math., AMS, Providence, Rhode Island, 13 (1962), 199–225.

    Google Scholar 

  103. Kreher, W., Internal stresses and relations between effective thermoelastic properties of stochastic solids-some exact solutions, Z. Angew. Math. Mech., 68(3) (1988), 147–154.

    MATH  Google Scholar 

  104. Krivoglaz, M., and Cherevko, A., On the elastic moduli of a two-phase solid. The Physics of Metals and Metallography, 8(2) (1959), 1–4. (Engl. Transl, from Phys. Metallov i Met-allov., Moscow, 8(2) (1859) 161-168.)

    Google Scholar 

  105. Kröner, E., Berechnung der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Physik, 151 (1958), 504–518

    Google Scholar 

  106. Kröner, E., Bounds for the self-consistent tensor of elastic moduli, Nucl. Sci. Appl., B (1977), 52–55

    Google Scholar 

  107. Kröner, E., Statistical modelling, in Modelling Small Deformation of Polycrystals, Gittus, J., and Zarka, J., eds., Elsevier, Barking, Essex, England (1986), 229–291.

    Google Scholar 

  108. Kunin, I. A., Elastic Medium with Microstructure, Vol. 2, Springer-Verlag, New York-London-Heidelberg-Tokio (1983).

    Google Scholar 

  109. Kunin, I. A., and Sosnina, E. G., An ellipsoidal inhomogeneity in an elastic medium, J. Appl. Math. Mech. (PMM), 37 (1971) 501–504. (Translated from Russian.)

    Google Scholar 

  110. Kuster, G. C., and Toksöz, M. N., Velocity and attenuation of seismic waves in two-phase media. I. Theoretical formulations. II. Experimental results, Geophysics, 39 (1974), 587–618.

    Google Scholar 

  111. Landau, L. D., and Lifshitz, E. M., Electrodynamics of Continuous Media, Pergamon Press, Oxford (1960).

    MATH  Google Scholar 

  112. Landauer, R., The electrical resistance of binary metallic mixtures, J. Appl. Phys., 23 (1952), 779–784.

    Google Scholar 

  113. Landauer, R., Electrical conductivity in inhomogeneous media, in Electrical Transport and Optical Properties of Inhomogeneous Media, Garland, J. C., and Tanner, D. B., eds., AIP Conf. Proc. No. 40, Am. Inst. Phys., New York (1978), 2–43.

    Google Scholar 

  114. Lax, M., Multiple scattering of waves. II. The effective field in dense systems, Rev. Mod. Phys., 85 (1952), 621–629.

    MATH  Google Scholar 

  115. Levin, V. M., On the coefficients of thermal expansion of heterogeneous materials, Mekhanika Tverdogo Tela, No 1 (1967), 88–93. (In Russian.) (English Transi. Mechanics of Solids, 2 (1967), 58-61.)

    Google Scholar 

  116. Levin, V. M., On determination of the elastic and thermoelastic moduli of composite materials, Mekhanika Tverdogo Tela, No 6 (1976), 136–145. (In Russian.)

    Google Scholar 

  117. Lipton, R., Influence of interfacial conduction on the DC electrical conductivity of particle reinforced composites, Proc. Roy. Soc. London Ser. A, 454 (1998), 1371–1382.

    MathSciNet  MATH  Google Scholar 

  118. Lomakin, V. A., On deformation of microinhomogeneous solids, Appl. Math. Mech. (itPMM), 29 (1965), 888–893. (In Russian.)

    Google Scholar 

  119. Lorentz, H. A., The Theory of Electrons, B. U. Teubner, Leipzig (1909); reprint Dover, New-York (1952).

    Google Scholar 

  120. Lorenz, L., Über die Refraktionskonstante, Ann. Phys. Chem., 11 (1880), 70ff.

    Google Scholar 

  121. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press (1927).

    Google Scholar 

  122. Mackenzie, J. K., Elastic constants of a solid containing spherical holes, Proc. Phys. Soc. London B, 63 (1950), 2–11.

    MATH  Google Scholar 

  123. Mal, A., and Knopoff, L., Elastic waves velocities in two-components systems, J. Ins. Math. Appl, 3 (1967), 376–387.

    MATH  Google Scholar 

  124. Malone, G. H., Suh, S. Y., and Prager, S., Variational bounds on the diffusive and hydrodynamics permeabilities of randomly perforated sheets, in The Mathematics and Physics of Disordered Media, Hughes, B. D., and Ninham, B. W., eds., Lecture Notes in Mathematics, vol. 1035 (1983), 370–390.

    Google Scholar 

  125. Markov, K. Z., Mechano-mathematical modelling of microinhomogeneous deformable solids, Doctor of Sci. Dissertation,Bulg. Acad. of Sciences and Sofia University (1981), 1–243. (In Bulgarian.)

    Google Scholar 

  126. Markov, K. Z., “One-particle” approximations in mechanics of composite materials, in Continuum Models and Discrete Systems, Brulin, O., and Hsieh, R. K. T., eds., North Holland (1981), 441–448.

    Google Scholar 

  127. Markov, K. Z., On the cluster bounds on the effective properties of microcracked solids, J. Mech. Phys. Solids, 46 (1998), 357–388.

    MathSciNet  MATH  Google Scholar 

  128. Markov, K. Z., On a two-point correlation function in random dispersions and an application, in Continuum Models and Discrete Systems, Inan, E., and Markov, K. Z., eds., World Sci. (1998), 206–215.

    Google Scholar 

  129. Matheron, G., Quelques inégalités pour la perméabilité effective d’un milieu poreux hétérogene, Cahiers de Géostatistique, Fasc. 3 (1993), 1–20.

    Google Scholar 

  130. Maxwell, J. C., A Treatise on Electricity and Magnetism, Dover, New York (1954). (Republication of 3rd edition of 1891.)

    MATH  Google Scholar 

  131. McCoy, J. J., On the displacement field in an elastic medium with random variations in material properties, in Recent Advances in Engineering Sciences, Vol. 5, Eringen, A. C., ed., Gordon and Breach, New York (1970), 235–254.

    Google Scholar 

  132. McLaughlin, R., A study of the differential scheme for composite materials, Int. J. Eng. Sci., 15 (1977), 237–244.

    MATH  Google Scholar 

  133. Miloh, T., and Benveniste, Y., On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proc. Roy. Soc. London Ser. A, 455 (1999), in press.

    Google Scholar 

  134. Miller, M. N., Bounds for effective electrical, thermal and magnetic properties of heterogeheous materials, J. Math. Phys., 10 (1969), 1988–2004.

    Google Scholar 

  135. Milton, G. W., Bounds on the electromagnetic, elastic and other properties of two-component composites, Phys. Review Lett., 46 (1981), 542–545.

    Google Scholar 

  136. Milton, G. W., Bounds on the complex permittivity of a two-component composites, J. Appl. Phys., 52 (1981), 5236–5241.

    Google Scholar 

  137. Milton, G. W., The coherent potential approximation is realizable effective medium scheme, Commun. Math. Phys., 99 (1985), 463–500.

    MathSciNet  Google Scholar 

  138. Milton, G. W., Composites: A myriad of microstructure independent relations, in Theoretical and Applied Mechanics 1996, Tatsumi, T. et al., eds., Elsevier (1997), 443–459.

    Google Scholar 

  139. Milton, G. W., On characterizing the set of possible effective tensors of composites: the variational method and the translation method, Comm. Pure Appl. Math., 43 (1990), 63–125.

    MathSciNet  MATH  Google Scholar 

  140. Milton, G. W., and Golden, K., Thermal conduction in composites, in Thermal Conductivity 18, Ashworth, T., and Smith, D. R., eds., Plenum Publ. Co. (1985), 571–582.

    Google Scholar 

  141. Molyneux, J., and Beran, M., Statistical properties of the stress and strain fields in a medium with small variations in elastic constants, J. Math. Mech., 14 (1965), 227–351.

    MathSciNet  Google Scholar 

  142. Mori, T., and Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21 (1973), 571–574.

    Google Scholar 

  143. Mossotti, O. F., Sur les forces qui régissent la constitution intérieur des corps aperçu pour servir à la détermination de la cause et des lois de l’action moléculaire, Ac. Sci. Torino, 22 (1836), 1–36.

    Google Scholar 

  144. Mossotti, O. F., Discussione analitica sul‘influenza che l‘azione di un mezzo dielettrico ha sulla distribuzione dell’elettricità alla superficie di più corpi elettrici disseminati in eso, Mem. Mat. Fis. della Soc. Ital. di Sci. in Modena, 24 (1850), 49–74.

    Google Scholar 

  145. Mura, T., Micromechanics of Defects in Solids, 2nd edition, Martinus Nijhoff, Dordrecht (1988).

    Google Scholar 

  146. Muratov, R. Z., The Potentials of an Ellipsoid, “Atomiz-dat”, Moscow (1975). (In Russian.)

    Google Scholar 

  147. Navier, Claude-L.-M.-H., Mémoire sur les lois de l’équilibre et du movement des corps solides élastiques, Mémoire de l’Academie royale des Sciences VII (1827), 375–394.

    Google Scholar 

  148. Nemat-Nasser, S., and Hori, M., Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier (1993).

    Google Scholar 

  149. Norris, A. N., A differential scheme for the effective moduli of composites. Mech. Mat., 4 (1985), 1–16.

    Google Scholar 

  150. Norris, A. N., Callegari, A. J., and Sheng, P., A generalized differential effective medium theory, J. Mech. Phys. Solids, 33 (1985), 525–543.

    MATH  Google Scholar 

  151. Norris, A. N., Sheng, P., and Callegari, A. J., Effective medium theories for two-phase dielectric media, J. Appl. Phys., 57 (1985), 1990–1996.

    Google Scholar 

  152. Papanicolaou, G., Effective parameters and fluctuations for boundary value problems, in Transactions of the 25th Conference of Army Mathematicians (1979), ARO Report 80-1 (1980), 733–744.

    Google Scholar 

  153. Parmenter, R. H., Energy levels of a disordered alloy, Phys. Review, 97 (1955), 587–598.

    MATH  Google Scholar 

  154. Paul, B., Prediction of the elastic constants of multiphase materials, Trans AIME, 218 (1960), 36–41.

    Google Scholar 

  155. Pham Huy, H., and Sanchez-Palencia, E., Phenomenes de transmission a travers des couches minces de conductivité elevée, J. Math. Anal, and Appl., 47 (1974), 284–309.

    MathSciNet  MATH  Google Scholar 

  156. Poisson, S. D., Mémoire sur la théorie du magnétisme, Mém. de VAcad. roy. de France, V (1824), 247–338. (copy from “Archives de l’Académie des Sciences, Paris.”)

    Google Scholar 

  157. Poisson, S. D., Second Mémoire sur la théorie du magnétisme, Mém. de I’VAcad. roy. de France, V (1824), 488–533. (copy from “Archives de l’Académie des Sciences, Paris.”)

    Google Scholar 

  158. Poisson, S. D., Mémoire sur la l’équilibre et le mouvement des corpes solides élastiques et des fluides (Extrait), Annales de chimie et de physique, XLII (1829), 145–171.

    Google Scholar 

  159. Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon the volume properties of a medium, Phil Mag., 34 (1892), 481–502.

    MATH  Google Scholar 

  160. Reuss, A., Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. angew. Math. Mech., 9 (1929), 49–58.

    MATH  Google Scholar 

  161. Reynolds, J. A., and Hough, J. M., Formulae for dielectric constant of mixtures, Proc. Phys. Soc., 70 (1957), 369–775.

    Google Scholar 

  162. Roscoe, R., The viscosity of suspensions of rigid spheres, Brit. J. Appl. Physics, 3 (1952), 267–269.

    Google Scholar 

  163. Rosen, B. W., Effective thermal expansion coefficient of composite materials, Ph. D. Dissertation, University of Pennsylvania, 1968.

    Google Scholar 

  164. Rosen, B. W., and Hashin, Z., Effective thermal expansion coefficient and specific heats of composite materials, Int. J. Eng. Sci., 8 (1970), 157–173.

    Google Scholar 

  165. Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory, Springer-Verlag, New York (1980).

    MATH  Google Scholar 

  166. Sen, P. N., Kenyon, W., Takezaki, H., and Petricola, M. J., Formation factor of carbonate rocks with microporosity: model calculations, G. Petroleum Sei. Eng., 17 (1997), 345–352.

    Google Scholar 

  167. Shapery, R. A., Thermal expansion coefficients of composite materials, based on energy principles, J. Compos. Mat., 2 (1968), 380–404.

    Google Scholar 

  168. Shermergor, T. D., Theory of Elasticity of Microinho-mogeneous Solids, “Nauka,” Moscow (1977). (In Russian.)

    Google Scholar 

  169. Skorohod, V. V., Calculation of the effective isotropie moduli of disperse solid systems, Poroshkovaja Metallurgija (Powder metall.), No 1 (1961), 50–55. (In Russian.)

    Google Scholar 

  170. Smoluchowski, M. v., Drei Vorträge über Diffusion, Brown-sche Molekularbewegung und Koagulation von Kolloidteichen, Physik. Zeitschr., 17 (1916), 557–571, Schluβ, 585-599.

    Google Scholar 

  171. Sotkilava, O. V., and Cherepanov, G. P., Some problems of the nonhomogeneous theory of elasticity, Appl. Mat. Mech. (PMM), 38(3) (1974), 539–550. (In Russian.)

    Google Scholar 

  172. Spencer, A. J. M., Theory of invariants, in Continuum Physics, vol. 1, Eringen, A. C., ed., Academic Press, New York (1971), 239–353.

    Google Scholar 

  173. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York (1941).

    MATH  Google Scholar 

  174. Talbot, D. R. S., and Willis, J. R., The effective sink strength of a random array of voids in irradiated material, Proc. R. Soc. London A, 370 (1980), 351–374.

    MathSciNet  MATH  Google Scholar 

  175. Talbot, D. R. S., and Willis, J. R., The overall sink strength of an inhomogeneous lossy medium. I. Self-consistent estimates, Mech. Materials, 3 (1984), 171–181.

    Google Scholar 

  176. Talbot, D. R. S., and Willis, J. R., Bounds and self-consistents estimates for overall properties of nonlinear composites, IMA J. Appl Math., 39 (1987), 215–240.

    MathSciNet  MATH  Google Scholar 

  177. Taylor, G. I., The viscosity of a fluid containing small drops of another fluid, Proc. R. Soc. Lond., 138 (1932), 41–48.

    Google Scholar 

  178. Theocharis, P. S., The Mesophase Concept in Composites, Springer-Verlag, Berlin (1987).

    Google Scholar 

  179. Toland, J. F., and Willis, J. R., Duality for families of natural variational principles in nonlinear electrostatics, SIAM J. Math. Anal., 20 (1989), 1283–1292.

    MathSciNet  MATH  Google Scholar 

  180. Torquato, S., Microscopic approach to transport in two-phase random media, Thesis, State University of New York at Stony Brook, 1980.

    Google Scholar 

  181. Torquato, S., Random heterogeneous media: Microstructure and improved bounds on effective properties, Appl. Mech. Rev., 44 (1991), 37–76.

    MathSciNet  Google Scholar 

  182. Torquato, S., and Rintoul, M. D., Effect of the interface on the properties of composite media, Physical Review Letters, 75 (1995), 4067–4070.

    Google Scholar 

  183. Torquato, S., and Stell, G., Microstructure of two-phase random media. I. The n-point probability functions, J. Chem Phys., 77 (1982), 2071–2077.

    MathSciNet  Google Scholar 

  184. Trimarco, C., The Toupin-Mindlin theory of dielectrics in the light of the Mossotti’s idea, Bulletin Polish Acad. Sci., Techn. Sci., 42 (1994), 495–504.

    MATH  Google Scholar 

  185. Van Kampen, N. G., and Felderhof, B. U., Theoretical Methods in Plasma Physics, North-Holland, Amsterdam (1967).

    MATH  Google Scholar 

  186. Voigt, W., Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper, Wied. Ann., 38 (1889), 573–587.

    Google Scholar 

  187. Walsh, J. B., The effect of cracks on the compressibilty of rocks, J. Geophys. Res., 70 (1965), 381–389.

    MATH  Google Scholar 

  188. Watt, J. P., The elastic properties of composite materials, Review Geophys. Space Phys., 14 (1976), 541–563.

    Google Scholar 

  189. Weng, G. J., Some elastic properties of reinforced solids with special reference to isotropie ones containing spherical inclusions, Int. J. Eng. Sci., 22 (1984), 845–856.

    MATH  Google Scholar 

  190. Weng, G. J., The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds, Iut. J. Eng. Sci., 28 (1990), 1111–1120.

    MATH  Google Scholar 

  191. Wiener, O., Die Theorie des Mischkörpers für das Feld des sta-tionaären Strömung. Erste Abhandlung die Mttelswertsätzefür Kraft, Polarisation und Energie. Abh. Math.-PhysichenKlasse Königl. Säcsh. Gessel. Wissen., 32(6) (1912), 509–604.

    MathSciNet  Google Scholar 

  192. Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25 (1977), 185–202.

    MATH  Google Scholar 

  193. Willis, J. R., Variational and related methods for the overall properties of composites, in Adv. Appl. Mechanics, vol. 21 Yih, C., ed., Academic Press, New York (1981), 1–78.

    Google Scholar 

  194. Willis, J. R., Elasticity theory of composites, in Mechanics of Solids, Hopkins, H. G., and Sewell, M. J., eds., Pergamon Press, Oxford and New York (1982), 653–686.

    Google Scholar 

  195. Willis, J. R., Randomly inhomogeneous media, in Homoge-nization Techniques for Composite Media, Proc. Lect. CISM, Udine, 1985, Lect. Notes Phys. 272 (1987), 279–336.

    MathSciNet  Google Scholar 

  196. Willis, J. R., The structure of overall constitutive relations for a class of nonlinear composites, IMA J Appl. Math., 43 (1989), 237–242.

    MathSciNet  Google Scholar 

  197. Wu, T. T., The effect of inclusion shape on the elastic moduli of a two-phase material, Int. J. Sol. Structures, 2 (1966), 2–8.

    Google Scholar 

  198. Wu, C.-T. D., and McGullough, R. L., Constitutive relationships for heterogeneous materials, in Developments in Composite Materials, Holister, G. S., ed., Appl. Science Publishers, London (1977), 119–187.

    Google Scholar 

  199. Zhikov, V., Kozlov, S., and Oleinik, O., Homogenization of Differential Operators, Springer, Berlin (1985).

    Google Scholar 

  200. Ziman, J. M., Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems, Cambridge University Press, Cambridge (1979).

    Google Scholar 

  201. Zimmerman, R. W., Elastic moduli of a solid with spherical pores: New self-consistent method, Int. J. Rock Mech., 21 (1984) 339–343.

    Google Scholar 

  202. Zimmerman, R. W., Elastic moduli of a solid containing spherical inclusions, Mech. Materials., 12 (1991), 17–24.

    Google Scholar 

  203. Zimmerman, R. W., Behavior of the Poisson ratio of a two-phase composite material in the high-concentration limit, Appl. Mech. Rev., 47 (1994), S38–S44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Markov, K.Z. (2000). Elementary Micromechanics of Heterogeneous Media. In: Markov, K., Preziosi, L. (eds) Heterogeneous Media. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1332-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1332-1_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7098-0

  • Online ISBN: 978-1-4612-1332-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics