Advertisement

Nitrergic Neurotransmission in the Lower Urinary Tract and Penile Erectile Tissues

  • Karl-Erik Andersson
Part of the Nitric Oxide in Biology and Medicine book series (NOBM, volume 2)

Abstract

Nonadrenergic, noncholinergic (NANC) nerves and neurotransmission can be demonstrated both in the lower urinary tract and in penile erectile tissues (Andersson, 1993; Andersson and Wagner, 1995). Many of the inhibitory NANC-mediated responses have been reported to involve nitric oxide (NO), but with the exception of the role of NO in penile erection, their functional importance has not been clarified. However, the demonstration of inhibitory NANC neurotransmission in normal, as well as pathophysiologically changed, lower urinary tract smooth muscles, suggests that NO may have a role physiologically and in different disorders of the lower urinary tract.

Keywords

Nitric Oxide Lower Urinary Tract Interstitial Cystitis Corpus Cavernosum Penile Erection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, P., Larsson, B., Ekblad, E., Sundler, R, and Andersson, K.-E. 1993 Immuno-histochemical localization of peripheral nitric oxide synthase containing nerves using antibodies raised against synthetized C- and N-terminal fragments of a cloned enzyme from rat brain. Acta Physiol. Scand. 148:421–429.PubMedCrossRefGoogle Scholar
  2. Alm, P., Zygmunt, P.K.E., Iselin, C., Larsson, B., Uvelius, B., Werner, S., and Andersson, K.-E. 1995. Nitric oxide synthase-munoreactive, adrenergic, cholinergic, and peptidergic nerves of the female rat urinary tract: a comparative study. J. Auton. Nerv. Syst. 56:105–114.PubMedCrossRefGoogle Scholar
  3. Andersson, K.-E. 1993. The pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol. Rev. 45:253–308.Google Scholar
  4. Andersson, K.-E., Garcia-Pascual, A., Forman, A., and Tottrup, A. 1991. Nonadrenergic, non-cholinergic nerve-mediated relaxation of rabbit urethra is caused by nitric oxide. Acta Physiol. Scand. 141:133–134.PubMedCrossRefGoogle Scholar
  5. Andersson, K.-E., Garcia-Pascual, A., Persson, K., Forman, A., and Tottrup, A.1992. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J. Urol. 147:253–259.PubMedGoogle Scholar
  6. Andersson, K.-E., Mattiasson, A., and Sjögren, C. 1983. Electrically induced relaxation of the noradrenaline contracted isolated urethra from rabbit and man. J. Urol. 129:210–213.PubMedGoogle Scholar
  7. Andersson, K.-E., and Persson, K. 1993. The L-arginine/nitric oxide pathway and non-adrenergic, non-cholinergic relaxation of the lower urinary tract. Gen. Pharmacol. 24:833–839.PubMedCrossRefGoogle Scholar
  8. Andersson, K.-E., and Wagner, G. 1995. Physiology of penile erection. Physiol. Rev. 75:191–236.PubMedGoogle Scholar
  9. Arvidsson, U., Reidl, M., Elde, R., and Meister, B. 1997. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J. Comp. Neurol. 378:454–467.PubMedCrossRefGoogle Scholar
  10. Asmussen, M., and Ulmsten, U. 1976. Simultaneous urethro-cystometry with a new technique. Scand. J. Urol. Nephrol. 10:7–11.PubMedCrossRefGoogle Scholar
  11. Azadzoi, K.M., and Goldstein, I. 1992. Erectile dysfunction due to atherosclerotic vascular disease: the development of an animal model. J. Urol. 147:1675–1681.PubMedGoogle Scholar
  12. Azadzoi, K.M., Goldstein, I., Siroky, M.B., Traish, A.B., Krane, R.J., and Saenz de-Tejada, I.1998. Mechanisms of ischemia-induced cavernosal smooth muscle relaxation impairment in a rabbit model of vasculogenic erectile dysfunction. J. Urol. 160:2216–2222.PubMedCrossRefGoogle Scholar
  13. Azadzoi, K.M., and Saenz de Tejada, I. 1991. Hypercholesterolemia impairs endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J. Urol. 146:238–240.PubMedGoogle Scholar
  14. Azadzoi, K.M., and Saenz de Tejada, I. 1992. Diabetes mellitus imparis neurogenic and endothelium-dependent relaxation of rabbit corpus cavernosum smooth muscle. J. Urol. 148:1587–1591.PubMedGoogle Scholar
  15. Azadzoi, K.M., Siroky, M.B., and Goldstein, I. 1996. Study of etiologic relationship of arterial atherosclerosis to corporal veno-occlusive dysfunction in the rabbit. J. Urol. 155:1795–800.PubMedCrossRefGoogle Scholar
  16. Ballard, S.A., Gingell, C.J., Tang, K., Turner, L.A., Price, M.E., and Naylor, A.M. 1998. Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J. Urol. 159:2164–2171.PubMedCrossRefGoogle Scholar
  17. Ballard, S.A., Turner, L.A., and Naylor, A.M. 1996. Sildenafil, a potent selective inhibitor of type 5 phosphodiesterase, enhances nitric oxide-dependent relaxation of rabbit corpus cavernosum (abstr). Br. J. Pharmacol. 118:153P.Google Scholar
  18. Beavo, J.A. 1995. Cyclic nucleotide phosphodiesterases: functional implications of mutiple isoforms. Physiol. Rev. 75:725–748.PubMedGoogle Scholar
  19. Bennett, B.C., Kruse, M.N., Roppolo, J.R., Flood, H.D., Fraser, M., and de Groat, W.C. 1995. Neural control of urethral outlet activity in vivo: role of nitric oxide. J. Uro1.153:2004–2009.CrossRefGoogle Scholar
  20. Birder, L.A., Apodaca, G., de Groat, W.C., and Kanai, A.J. 1998. Adrenergic-and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am. J. Physiol. 275:F226–F229.PubMedGoogle Scholar
  21. Birder, L.A., Kanai, A.J., and de Groat, W.C. 1997. DMSO: effect on bladder afferent neurons and nitric oxide release. J. Urol. 158:1989–1995.PubMedCrossRefGoogle Scholar
  22. Bloch, W., Klotz, T., Sedlaczek, P., Zumbé, J., Engelmann, U., and Addicks, K. 1998. Evidence for the involvement of endothelial nitric oxide synthase from smooth muscle cells in the erectile function of the human corpus cavernosum. Urol. Res. 26:129–135.PubMedCrossRefGoogle Scholar
  23. Boolell, M., Allen, M.J., Ballard, S.A., Gepi-Attee, S., Muirhead, G.J., Naylor, A.M., Osterloh, I.H., and Gingell, C. 1996a. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impotence Res. 8:47–52.Google Scholar
  24. Boolell, M., Gepi-Attee, S., Gingell, J.C., and Allen, M.J. 1996b. Sildenafil, a novel oral therapy for male erectile dysfunction. Br. J. Urol. 78:257–261.CrossRefGoogle Scholar
  25. Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., and Snyder, S.H. 1991. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718.PubMedCrossRefGoogle Scholar
  26. Bredt, D.S., Hwang, P.M., and Snyder, S.H. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.PubMedCrossRefGoogle Scholar
  27. Bridgewater, M., MacNeil, H.F., and Brading, A.F. 1993. Regulation of tone in pig urethral smooth muscle. J Urol. 150:223–228.PubMedGoogle Scholar
  28. Burnett, A.L. 1997. Nitric oxide in the penis: physiology and pathology. J. Urol. 157:320–324.PubMedCrossRefGoogle Scholar
  29. Burnett, A.L., Calvin, D.C., Chamness, S.L., Liu, J.-X., Nelson, R.J., Klein, S.L., Dawson, V.L., Dawson, T.M., and Snyder, S.H. 1997. Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nature Med. 3:571–574.PubMedCrossRefGoogle Scholar
  30. Burnett, A.L., Lowenstein, C.J., Bredt, D.S., Chang, T.S.K., and Snyder, S.H. 1992. Nitric oxide: a physiologic mediator of penile erection. Science 257:401–403.PubMedCrossRefGoogle Scholar
  31. Burnett, A.L., Nelson, R.J., Calvin, D.C., Liu, J-X., Demas, G.E., Klein, S.L., Kriegsfeld, L.J., Dawson, V.L., Dawson, T.M., and Snyder, S.H. 1996. Nitric oxide-dependent penile erection in mice lacking neuronal nitric oxide synthase. Mol. Med. 2:288–296.PubMedGoogle Scholar
  32. Burnett, A.L., Tillman, S.L., Chang, T.S., Epstein, J.I., Lowenstein, C.J., Bredt, D.S., Snyder, S.H., and Walsh, P.C. 1993. Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis. J. Urol. 150:73–76.PubMedGoogle Scholar
  33. Bush, P.A., Gonzalez, N.E., and Ignarro, L.J. 1992. Biosynthesis of nitric oxide and citrulline from L-arginine by constitutive nitric oxide synthase present in rabbit corpus cavernosum. Biochem. Biophys. Res. Commun. 186:308–314.PubMedCrossRefGoogle Scholar
  34. Carrier, S., Nagaraju, P., Morgan, D.M., Baba, K., Nunes, L., and Lue, T. 1997. Age decreases nitric oxide synthase-containing nerve fibers in the rat penis. J. Urol. 157:1088–1092.PubMedCrossRefGoogle Scholar
  35. Carter, A.J., Ballard, S.A., and Naylor, A.M. 1998. Effect of the selective phosphodiesterase type 5 inhibitor sildenafil on erectile function in the anesthetized dog. J. Urol. 160:242–246.PubMedCrossRefGoogle Scholar
  36. Cellek, S., and Moncada, S. 1997. Nitrergic control of peripheral sympathetic responses in the human corpus cavernosum. Proc. Nad. Acad. Sci. USA 94:8226–8231.CrossRefGoogle Scholar
  37. Chamness, S.L., Ricker, D.D., Crone, J.K., Dembeck, C.L., Maguire, M.P., Burnett, A.L., and Chang, T.S.K. 1995. The effect of androgen on nitric oxide synthase in the male reproductive tract of the rat. Fertil. Steril. 63:1101–1107.PubMedGoogle Scholar
  38. Chuang, A.T., Strauss, J.D., Murphy, R.A., and Steers, W.D. 1998. Sildenafil, a type-5 cGMP phosphodiesterase inhibitor, specifically amplifies endogenous cGMP-dependent relaxation in rabbit corpus cavernosum smooth muscle in vitro. J. Urol.160:257–261.PubMedCrossRefGoogle Scholar
  39. Chung, B.H., Choi, S.K., and Chang, K.C. 1996. Effects of nitric oxide on detrusor relaxation. J. Urol. 155:2090–2093.PubMedCrossRefGoogle Scholar
  40. Coolsaet, B. 1985. Bladder compliance and detrusor activity during the collection phase. Neurourol. Urodyn. 4:263–273.CrossRefGoogle Scholar
  41. Dahiya, R., Lin, A., Bakicioglu, M.E., Huang, S.T., and Lue, T.F. 1997. mRNA and protein expression of nitric oxide synthase and adrenoceptor alpha 1 in young and old rat penile tissues. Br. J. Urol. 80:300–306.PubMedCrossRefGoogle Scholar
  42. Dail, W.G., Barba, V., Leyba, L., and Galindo, R. 1995. Neural and endothelial nitric oxide synthase activity in rat penile erectile tissue. Cell Tissue Res. 282:109–116.PubMedCrossRefGoogle Scholar
  43. Dail, W.G., Galindo, R., Leyba, L., and Barba, V. 1997. Denervation-induced changes in perineuronal plexuses in the major pelvic ganglion of the rat: immunohisto-chemistry for vasoactive intestinal polypeptide and tyrosine hydroxylase and histochemistry for NADPH-diaphorase. Cell Tissue Res. 287:315–324.PubMedCrossRefGoogle Scholar
  44. Dawson, T.M., Bredt, D.S., Fotuhi, M., Hwang, P.M., and Snyder, S.H. 1991. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 88:7797–7801.PubMedCrossRefGoogle Scholar
  45. de Groat, W.C. 1975. Nervous control of the urinary bladder of the cat. Brain Res. 87:201–211.PubMedCrossRefGoogle Scholar
  46. Desai, K.M., Sessa, W.C., and Vane, J.R. 1991. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351:477–479.PubMedCrossRefGoogle Scholar
  47. Ding, Y.Q., Takada, M., Kaneko, T., and Mizuno, N. 1995. Colocalization of vasoactive intestinal polypeptide and nitric oxide in penis-innervating neurons in the major pelvic ganglion of the rat. Neurosci. Res. 22:129–131.PubMedCrossRefGoogle Scholar
  48. Ding, Y., Wang, Y., Qin, B., and Li, J. 1993. The major pelvic ganglion is the main source of nitric oxide synthase-containing nerve fibers in penile erectile tissue of the rat. Neurosci. Lett. 164:187–189.PubMedCrossRefGoogle Scholar
  49. Dokita, S., Morgan, W.R., Wheeler, M.A., Yoshida, M., Latifpour, J., and Weiss, R.M. 1991. NG-Nitro-L-arginine inhibits non-adrenergic, non-cholinergic relaxation in rabbit urethral smooth muscle. Life Sci. 4:2429–2436.CrossRefGoogle Scholar
  50. Dokita, S., Smith, S.D., Nishimoto, T., Wheeler, M.A., and Weiss, R.M. 1994. Involvement of nitric oxide and cyclic GMP in rabbit urethral relaxation. Eur. J. Pharmacol. 269:269–275.CrossRefGoogle Scholar
  51. Domoto, T., and Tsumori, T. 1994. Co-localization of nitric oxide synthase and vasoactive intestinal peptide immunoreactivity in neurons of the major pelvic ganglion projecting to the rat rectum and penis. Cell Tissue Res. 278:273–278.PubMedCrossRefGoogle Scholar
  52. Dun, N.J., Dun, S.L., Wu, S.Y., Förstermann, U., Schmidt, H.H.H.W., and Tseng, L.F. 1993. Nitric oxide synthase immunoreactivity in the rat, mouse, cat and squirrel monkey spinal cord. Neuroscience 54:845–857.PubMedCrossRefGoogle Scholar
  53. Edvardsen, P. 1968. Nervous control of urinary bladder in cats. III. Effects of autonomic blocking agents in the intact animal. Acta Physiol. Scand. 72: 183–193.CrossRefGoogle Scholar
  54. Ehmke, H., Junemann, K.P., Mayer, B., and Kummer, W.1995. Nitric oxide synthase and vasoactive intestinal polypeptide colocalization in neurons innervating the human penile circulation. Int. J. Impotence Res. 7:147–156.Google Scholar
  55. Ehrén, I., Iversen, H., Jansson, O., Adolfsson, J., and Wiklund, N.P. 1994. Localization of nitric oxide synthase activity in the human lower urinary tract and its correlation with neuroeffector responses. Urology 44:683–687.PubMedCrossRefGoogle Scholar
  56. Ehrén, I., Lundberg, J.O., Adolfsson, J., and Wiklund, N.P. 1998. Effects of L-arginine treatment on symptoms and bladder nitric oxide levels in patients with interstitial cystitis. Urology 52:1026–1029.PubMedCrossRefGoogle Scholar
  57. Elabbady, A.A., Gagnon, C., Hassouna, M.M., Bégin, L.R., and Elhilali, M.M. 1995. Diabetes mellitus increases nitric oxide synthase in penises but not in major pelvic ganglia of the rat. Br. J. Urol. 76:196–202.PubMedCrossRefGoogle Scholar
  58. Elfvin, L.G., Holmberg, K., Emson, P., Schemann, M., and Hokfelt, T. 1997. Nitric oxide synthase, choline acetyltransferase, catecholamine enzymes and neuropeptides and their colocalization in the anterior pelvic ganglion, the inferior mesenteric ganglion and the hypogastric nerve of the male guinea pig. J. Chem. Neuroanat. 14:33–49.PubMedCrossRefGoogle Scholar
  59. Eliasson, M.J.L., Blackshaw, S., Schell, M.J., and Snyder, S.H. 1997. Neuronal nitric oxide synthase alternatively spliced forms: prominent functional localizations in the brain. Proc. Natl. Acad. Sci. USA 94:3396–3340.PubMedCrossRefGoogle Scholar
  60. Elliott, R.A., and Castleden, C.M. 1993. Nerve mediated relaxation in human detrusor muscle Br. J. Clin. Pharmacol. 36:479.PubMedCrossRefGoogle Scholar
  61. Förstermann, U., Schmidt, H.H.H.W., Pollock, J.S., Sheng, H., Mitchell, J.A., Warner, T.D., Nakane, M., and Murad, E 1991. Isoforms of nitric oxide synthase. Charac-terization and purification from different cell types. Biochem. Pharmacol. 42:1849–1857.PubMedCrossRefGoogle Scholar
  62. Garban, H., Marquez, D., Magee, T., Moody, J., Rajavashisth, T., Rodriguez, J.A., Hung, A., Vernet, D., Rajfer, J., and Gonzalez-Cadavid, N.F. 1997. Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol. Reprod. 56:954–963.PubMedCrossRefGoogle Scholar
  63. Garban, H., Vernet, D., Freedman, A., Rajfer, J., and Gonzalez-Cavidad, N. 1995. Effect of aging on nitric oxide-mediated. penile erection in rats. Am J. Physiol. 268:H467–H475.PubMedGoogle Scholar
  64. Garcia-Pascual, A., Costa, G., Garcia-Sacristan, A., and Andersson, K.-E. 1991. Relaxation of sheep urethral smooth muscle induced by electrical stimulation of nerves: involvement of nitric oxide. Acta Physiol. Scand. 141:531–539.PubMedCrossRefGoogle Scholar
  65. Griffith, O.W., and Stuehr, D.J. 1995. Nitric oxide synthases: properties and catalytic mechanism. Annu. Rev. Physiol. 57:707–736.PubMedCrossRefGoogle Scholar
  66. Grozdanovic, Z., Baumgarten, H.G., and Brüning, G. 1992. Histochemistry of NADPH-diaphorase, a marker for neuronal nitric oxide synthase, in the peripheral autonomic nervous system of the mouse. Neuroscience 48:225–235.PubMedCrossRefGoogle Scholar
  67. Haas, C.A., Seftel, A.D., Razmjouei, K., Ganz, M.B., Hampel, N., and Ferguson, K. 1998. Erectile dysfunction in aging: upregulation of endothelial nitric oxide synthase. Urology 51:516–522.PubMedCrossRefGoogle Scholar
  68. Hashimoto, S., Kigoshi, S., and Muramatsu, I. 1992. Neurogenic responses of urethra isolated from the dog. Eur. J. Pharmacol. 213:117–123.PubMedCrossRefGoogle Scholar
  69. Hashimoto, S., Kigoshi, S., and Muramatsu, I. 1993. Nitric oxide-dependent and -independent neurogenic relaxations of isolated dog urethra. Eur. J. Pharmacol. 231:209–214.PubMedCrossRefGoogle Scholar
  70. Hedlund, R, Alm, R, and Andersson, K.-E. 1995a. Distribution and function of nitric oxide-containing nerves in canine corpus cavernosum and spongiosum. Acta Physiol. Scand. 155:445–455.CrossRefGoogle Scholar
  71. Hedlund, R, Alm, P., and Andersson, K.-E. 1999. NO synthase in cholinergic nerves and NO-induced relaxation in the rat isolated corpus cavernosum. Br. J. Pharmacol. 127:349–360.PubMedCrossRefGoogle Scholar
  72. Hedlund, E, Alm, P., Ekström, P., Fahrenkrug, J., Hannibal, J., Hedlund, H., Larsson, B., and Andersson, K.-E. 1995b. Pituitary adenylate cyclase-activating polypeptide, helospectin, and vasoactive intestinal polypeptide in human corpus cavernosum. Br. J. Pharmacol. 116:2258–2266.CrossRefGoogle Scholar
  73. Hempelmann, R.G., Papadopoulos, I., and Herzig, S. 1995. Non-synergistic relaxant effects of vasoactive intestinal polypeptide and SIN-1 in human isolated. cavernous artery and corpus cavernosum. Eur. J. Pharmacol. 276:277–280.PubMedCrossRefGoogle Scholar
  74. Hills, J., Meldrum, L., Klarskov, P., and Burnstock, G. 1984. A novel nonadrenergic, non-cholinergic nerve mediated relaxation of the pig bladder neck; an examination of possible neuro-transmitter candidates. Eur. J. Pharmacol. 99:287–293.PubMedCrossRefGoogle Scholar
  75. Hindmarsh, J.R., Gosling, P.T., and Deane, A.M. 1983. Bladder instability. Is the primary defect in the urethra? Br. J. Urol. 55:648–651.PubMedCrossRefGoogle Scholar
  76. Ho, K.M.T., McMurray, G., Brading, A.F., Noble, J.G., Ny, L., and Andersson, K.E. 1998. Nitric oxide synthase in the heterogeneous population of intramural striated muscle fibres of the human membranous urethral sphincter. J. Urol. 159:1091–1096.PubMedCrossRefGoogle Scholar
  77. Hope, B.T., Michael, G.J., Knigge, K.M., and Vincent, S.R. 1991. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA 88:2811–2814.PubMedCrossRefGoogle Scholar
  78. Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H., and Fishman, M.C. 1993. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75: 1273–1286.PubMedCrossRefGoogle Scholar
  79. Hung, A., Vernet, D., Xie, Y., Rajavashisth, T., Rodriguez, J.A., Rajfer, J., and Gonzalez-Cavidad, N.F. 1995. Expression of inducible nitric oxide synthase in smooth muscle cells from rat penile corpora cavernosa. J. Androl. 16:469–481.PubMedGoogle Scholar
  80. Ito, Y., and Kimoto, Y. 1985. The neural and non-neural mechanisms involved in urethral activity in rabbits. J. Physiol. (Lond.) 367:57–72.Google Scholar
  81. James, M.J., Birmingham, A.T., and Hill, S.J. 1993a. Partial mediation by nitric oxide of the relaxation of human isolated detrusor.strips in response to electrical field stimulation. Br. J. Clin. Pharmacol. 35:366–372.CrossRefGoogle Scholar
  82. James, M.J., Harriss, D.R., Birmingham, A.T., and Hill, S.J. 1993b. Significance of atropine concentration for the incidence of tetrodotoxin-resistant relaxations of human detrusor strips. Br. J. Clin. Pharmacol. 36:480–481.CrossRefGoogle Scholar
  83. James, M.J., and Iacovou, J.W.1993. The use of GTN patches in detrusor instability. A pilot study. Neurourol. Urodyn. 12:399–400.Google Scholar
  84. Jarchau, T., Hausler, C., Markert, T., Pohler, D., Vanderkerckhove, J., De Jonge, H.R., Lohmann, S.M., and Walter, U. 1994. Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc. Natl. Acad. Sci. USA 91:9426–9430.PubMedCrossRefGoogle Scholar
  85. Jen, P.Y.P., Dixon, J.S., Gearhart, J.P., and Gosling, J.A. 1996. Nitric oxide synthase and tyrosine hydroxylase are colocalized in nerves supplying the postnatal human male genitourinary organs. J. Urol. 155:1117–1121.PubMedCrossRefGoogle Scholar
  86. Jeremy, J.Y., Ballard, S.A., Naylor, A.M., Miller, M.A.W., and Angelini, G.D. 1997. Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. Br. J. Urol. 79:958–963.PubMedCrossRefGoogle Scholar
  87. Kaiser, F.E. 1991. Sexuality and impotence in the aging man. Clin. Geriatr. Med. 7:63–72.PubMedGoogle Scholar
  88. Keast, J.R. 1992. A possible neural source of nitric oxide in the rat penis. Neurosci. Lett. 143:69–73.PubMedCrossRefGoogle Scholar
  89. Keilbach, A., Ruth, P., and Hofmann, F.1992. Detection of cGMP-dependent protein kinase isozymes by specific antibodies. Eur. J. Biochem. 208:467–473.PubMedCrossRefGoogle Scholar
  90. Kim, N., Vardi, Y., Padma-Nathan, H., Daley, J., Goldstein, I., and Saenz de Tejada, I. 1993. Oxygen tension regulates the nitric oxide pathway. Physiological role in penile erection. J. Clin. Invest. 91:437–442.PubMedCrossRefGoogle Scholar
  91. Kimoto, Y., Kessler, R., and Constantinou, C.E. 1990. Endothelium dependent relax-ation of human corpus cavernosum by bradykinin J. Urol. 144:1015–1017.PubMedGoogle Scholar
  92. Klarskov, P. 1987. Non-cholinergic, non-adrenergic inhibitory nerve responses of bladder outlet smooth muscle in vitro. Br. J. Urol. 60:337–342.PubMedCrossRefGoogle Scholar
  93. Klarskov, P., Gerstenberg, T., Ramirez, D., and Hald, T. 1983. Non-cholinergic, non-adrenergic nerve mediated relaxation of trigone, bladder neck and urethral smooth muscle in vitro. J. Urol. 129:848–850.PubMedGoogle Scholar
  94. Klevmark, B. 1977. Motility of the urinary bladder in cats during filling at physio-logical rates. II. Effects of extrinsic bladder denervation on intramural tension and intravesical pressure patterns. Acta Physiol. Scand. 101:176–184.PubMedCrossRefGoogle Scholar
  95. Kulseng-Hanssen, S. 1983. Prevalence and pattern of unstable urethral pressure in one hundred seventy-four gynecologic patients referred for urodynamic investigation. Am. J. Obstet. Gynecol. 146:895–900.PubMedGoogle Scholar
  96. Kulseng-Hanssen, S. 1987. Urethral pressure variations in women with neurourological symptoms: II. Relationship to urethral smooth muscle. Neurourol. Urodyn. 6:79–85.CrossRefGoogle Scholar
  97. Larsson, B., Alm, P., Persson, K., and Andersson, K.-E. 1992. Studies on the localization of some neurotransmitters, nerve markers, and NADPH diaphorase activity in tissues from the pig lower urinary tract. Neurourol. Urodyn. 11:444–445.CrossRefGoogle Scholar
  98. Lee, J.G., Copien, D., Macarak, E., Wein, A.J., and Levin, R.M. 1994. Comparative studies on the ontogeny and autonomic responses of the fetal calf bladder at different stages of development: involvement of nitric oxide on field stimulated relaxation. J. Urol. 151:1096–1101.PubMedGoogle Scholar
  99. Lincoln, J., and Burnstock, G. 1993. Autonomic innervation of the urinary bladder and urethra. In: The Autonomic Nervous System. Vol. 6, Chapter 8: Nervous Control of the Urogenital System (ed. by CA Maggi). Harwood Academic Publishers, London, pp. 33–68.Google Scholar
  100. Lincoln, T.M., and Cornwell, T.L. 1993. Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338.PubMedGoogle Scholar
  101. Liu, S.H., and Lin-Shiau, S.Y. 1997. Enhancement by nitric oxide of neurogenic contraction in the mouse urinary bladder. Naunyn-Schmiedebergs Arch. Pharmacol. 356:850–852.PubMedCrossRefGoogle Scholar
  102. Lohmann, S.M., Vaandrager, A.B., Smolenski, A., Walter, U., and De Jonge, R. 1997. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem. Sci. 22:307–312.PubMedCrossRefGoogle Scholar
  103. Low, J.A. 1977. Urethral behaviour during the involuntary detrusor contraction. Am. J. Obstet. Gynecol. 128:32–42.PubMedGoogle Scholar
  104. Low, J.A., Armstrong, J.B., and Mauger, G.M. 1989. The unstable urethra in the female. Obstet. Gynecol. 74:69–74.PubMedGoogle Scholar
  105. Lugg, J., Ng, C., Rajfer, J., and Gonzalez-Cavidad, N. 1996. Cavernosal nerve stimulation in the rat reverses castration-induced decrease in penile NOS activity. Am. J. Physiol. 271:E354–E361.PubMedGoogle Scholar
  106. Lundberg, J.O., Ehren, I., Jansson, O., Adolfsson, J., Lundberg, J.M., Weitzberg, E., Alving, K., and Wiklund, N.P. 1996. Elevated nitric oxide in the urinary bladder in infectious and noninfectious cystitis. Urology 48:700–702.PubMedCrossRefGoogle Scholar
  107. Magee, T., Fuentes, A.M., Garban, H., Rajavashisth, T., Marquez, D., Rodriguez, J.A., Rajfer, J., and Gonzalez-Cavidad, N.F. 1996. Cloning of a novel nitric oxide synthase expressed in penis and lower urinary tract. Biochem. Biophys. Res. Commun. 226:145–151.PubMedCrossRefGoogle Scholar
  108. Maggi, C.A., Santicioli, P., and Meli, A. 1985. Sympathetic inhibition of reflex activation of bladder motility during filling at a physiological-like rate in urethane anaesthetized rats. Neurourol. Urodyn. 4:37–45.CrossRefGoogle Scholar
  109. Mannino, D.M., Kievens, R.M., and Flanders, W.D. 1994. Cigarette smoking: an independent risk factor for impotence? Am. J. Epidemiol. 140:1003–1008.PubMedGoogle Scholar
  110. Martinez-Pineiro, L., Trigo-Rocha, E, Hsu, L., von Heyden, B., Lue, T.F., and Tanagho, E.A. 1993. Cyclic guanosine monophosphate mediates penile erection in the rat. Eur. Urol. 24:492–499.PubMedGoogle Scholar
  111. Mattiasson, A., Andersson, K.-E., Elbadawi, A., Morgan, E., and Sjögren, C. 1987. Interaction between adrenergic and cholinergic nerve terminals in the urinary bladder of rabbit, cat and man. J. Urol. 137:1017–1019.PubMedGoogle Scholar
  112. Mattiasson, A., Andersson, K.-E., and Sjögren, C. 1985. Contractant and relaxant properties of the female rabbit submucosa. J. Urol. 133:304–310.PubMedGoogle Scholar
  113. McGuire, E.J. 1978. Reflex urethral instability. Br. J. Urol. 50:200–204.PubMedCrossRefGoogle Scholar
  114. McGuire, E.J. 1984. Detrusor response to outlet obstruction. World J. Urol. 2:208–210.CrossRefGoogle Scholar
  115. McGuire, E.J., and Herlihy, E. 1978. Bladder and urethral responses to isolated sacral motor root stimulation. Invest. Urol. 16:219–223.PubMedGoogle Scholar
  116. McNeill, D.L., Papka, R.E., and Harris, C.H. 1992a. CGRP immunoreactivity and NADPH-diaphorase in afferent nerves of the rat penis. Peptides 13:1239–1246.CrossRefGoogle Scholar
  117. McNeill, D.L., Traugh, N.E., Jr., Vaidya, A.M., Hua, H.T., and Papka, R.E. 1992b. Origin and distribution of NADPH-diaphorase-positive neurons and fibers innervating the urinary bladder of the rat. Neurosci. Lett. 147:33–36.CrossRefGoogle Scholar
  118. Melman, A., and Gingell, J.C. 1999. The epidemiology and pathophysiology of erectile dysfunction. J. Urol. 161:5–11.PubMedCrossRefGoogle Scholar
  119. Mevorach, R.A., Bogaert, G.A., and Kogan, B.A. 1994. Role of nitric oxide in fetal lower urinary tract function. J. Urol. 152:510–514.PubMedGoogle Scholar
  120. Mills, T.M., Stopper, V.S., and Wiedmeier, V.T. 1994. Effects of castration and androgen replacement on the hemodynamics of penile erection in the rat. Biol. Reprod. 51:234–238.PubMedCrossRefGoogle Scholar
  121. Mills, T.M., Wiedmeier, V.T., and Stopper, V.S. 1992. Androgen maintenance of erectile function in the rat penis. Biol. Reprod. 46:342–348.PubMedCrossRefGoogle Scholar
  122. Miodrag, A., Castleden, C.M., and Vallance, T.R. 1988. Sex hormones and the female urinary tract. Drugs 36:491–504.PubMedCrossRefGoogle Scholar
  123. Moody, J.A., Vernet, D., Laidlaw, S., Rajfer, J., and Gonzalez-Cavidad, N.F. 1997. Effects of long-term oral administration of L-arginine on the rat erectile response. J. Urol. 158:942–947.PubMedCrossRefGoogle Scholar
  124. Moon, A., Pickard, R.S., Gillespie, J.I., and Neal, D.E. 1997. Contractile responses to sodium nitroprusside and L-arginine in isolated human detrusor. J. Urol. 157:258 (abstract 1012).CrossRefGoogle Scholar
  125. Morita, T., Tsujii, T., and Dokita, S. 1992. Regional difference in functional roles of cAMP and cGMP in lower urinary tract smooth muscle contractility. Urol. Int. 49:191–195.PubMedCrossRefGoogle Scholar
  126. Nesbit, R.M., Lapides, J., Valk, W.W., Sutler, M., Berry, R.L., Lyons, R.H., Campbell, K.N., and Moe, G.K. 1947. The effects of blockade of the autonomic ganglia on the urinary bladder in man. J. Urol. 57:242–250.PubMedGoogle Scholar
  127. Nishizawa, S., Igawa, Y., Okada, N., and Ohhashi, T. 1997. Capsaicin-induced nitricoxide-dependent relaxation in isolated dog urethra. Eur. J. Pharmacol. 335: 211–219.PubMedCrossRefGoogle Scholar
  128. Noble, J.G., Crowe, R., Robson, T., Milroy, E.J.G., and Burnstock, G. 1993. Neuropeptide-Y immunoreactive nerve density within the male bladder neck. A clue to the aetiology of bladder neck dyssynergia. Neurourol. Urodyn. 12:367–368.Google Scholar
  129. Noto, H., Kawahara, T., Shimoda, N., Suzuki, T., Nishizawa, O., Harada, T., and Tsuchida, S. 1993. Internal urethral sphincter relaxation mediated by a nonadrenergic and non-cholinergic mechanism in decerebrate cats. J. Urol. 149:341A (abstract 513).Google Scholar
  130. Parlani, M., Conte, B., Goso, C., Szallasi, A., and Manzini, S. 1993a. Capsaicininduced relaxation in the rat isolated external urethral sphincter: characterization of the vanilloid receptor and mediation by CGRP. Br. J. Pharmacol. 110:989–994.CrossRefGoogle Scholar
  131. Parlani, M., Conte, B., and Manzini, S. 1993b. Nonadrenergic, noncholinergic inhibitory control of the rat external urethral sphincter: involvement of nitric oxide. J. Pharmacol. Exp. Ther. 265:713–719.Google Scholar
  132. Persson, K., Alm, E, Johansson, K., Larsson, B., and Andersson, K.-E. 1993. Nitric oxide synthase in pig lower urinary tract. immunohistochemistry, NADPH diaphorase histochemistry, and functional effects. Br. J. Pharmacol. 110:521–530.PubMedCrossRefGoogle Scholar
  133. Persson, K., Alm, P., Johansson, K., Larsson, B., and Andersson, K.-E. 1995. Coexistence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract. J. Auton. Nerv. Syst. 52:115–236.CrossRefGoogle Scholar
  134. Persson, K., Alm, P., Uvelius, B., and Andersson, K.-E. 1998. Nitrergic and cholinergic innervation of the rat lower urinary tract after pelvic ganglionectomy. Am. J. Physiol. 274:R389–R397.PubMedGoogle Scholar
  135. Persson, K., and Andersson, K.-E. 1992. Nitric oxide and relaxation of pig lower urinary tract. Br. J. Pharmacol. 106:416–422.PubMedCrossRefGoogle Scholar
  136. Persson, K., and Andersson, K.-E. 1994. Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract. Eur. J. Pharmacol. 268:159–167.PubMedCrossRefGoogle Scholar
  137. Persson, K., Igawa, Y., Mattiasson, A., and Andersson, K.-E. 1991. Inhibition of the L-arginine/nitric oxide pathway causes bladder hyperactivity in the rat. Acta Physiol. Scand. 144:107–108.CrossRefGoogle Scholar
  138. Persson, K., Igawa, Y., Mattiasson, A., and Andersson, K.-E. 1992. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br. J. Pharmacol. 107:178–184.PubMedCrossRefGoogle Scholar
  139. Persson, K., Johansson, K., Alm, P., Larsson, B., and Andersson, K.-E. 1997. Morphological and functional evidence against a sensory and sympathetic origin of nitric oxide synthase-containing nerves in the rat lower urinary tract. Neuroscience 77:271–281.PubMedCrossRefGoogle Scholar
  140. Pfeifer, A., Aszódi, A., Seidler, U., Ruth, P., Hofmann, F., and Fässler, R. 1996. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086.PubMedCrossRefGoogle Scholar
  141. Pfeifer, A., Klatt, P., Massberg, S., Ny, L., Sausbier, M., Hirneiss, C., Wang, G., Korth, M., Aszódi, A., Andersson, K.-E., Krombach, E, Mayerhofer, A., Ruth, E, Fässler, R., and Hofmann, F. 1998a. Defective smooth muscle regulation in cGMP-kinase I-deficient mice. EMBO J. 17:3045–3051.CrossRefGoogle Scholar
  142. Pfeifer, A., Ruth, E, Dostmann, W., Sausbier, M., Klatt, E, and Hofmann, E 1998b. Structure and function of cGMP-dependent protein kinases. Rev. Physiol. Biochem. Pharmacol. 150:105–149.Google Scholar
  143. Poison, J.B., and Strada, S.J. 1996. Cyclic nucleotide phosphodiesterases and vascular smooth muscle. Annu. Rev. Pharmacol. Toxicol. 36:403–427.CrossRefGoogle Scholar
  144. Prieto, D., Simonsen, U., Hernandez, M., and Garcia-Sacristan. 1998. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelim-dependent relaxations of horse penile small arteries. Br. J. Pharmacol. 123:1609–1620.PubMedCrossRefGoogle Scholar
  145. Rajasekaran, M., Mondai, D., Agrawal, K., Chen, I., Hellstrom, W., and Sikka, S. 1998. Ex vivo expression of nitric oxide synthase isoforms (eNOS/iNOS) and calmodulin in human penile cavernosal cells. J. Urol. 160:2210–2215.PubMedCrossRefGoogle Scholar
  146. Reilly, C.M., Zamorano, P., Stopper, V.S., and Mills, T.M. 1997. Androgenic regulation of NO availability in rat penile erection. J. Androl. 18:110–115.PubMedGoogle Scholar
  147. Rud, T., Ulmsten, U., and Andersson, K.-E. 1978. Initiation of voiding in healthy women and those with stress incontinence. Acta Obstet. Gynecol. Scand. 57:457–461.PubMedCrossRefGoogle Scholar
  148. Saenz de Tejada, I., and Goldstein, I. 1988. Diabetic penile neuropathy. UroL Clin. North Am. 15:17–22.Google Scholar
  149. Saenz de Tejada, I., Goldstein, I., Azadzoi, K., Krane, R.J., and Cohen, R.A. 1989. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N. Engl. J. Med. 320:1025–1030.CrossRefGoogle Scholar
  150. Schirar, A., Chang, C., and Rousseau, J.P. 1997. Localization of androgen receptor in nitric oxide synthase-and vasoactive intestinal peptide-containing neurons of the major pelvic ganglion innervating the rat penis. J. Neuroendocrinol. 9:141–150.PubMedCrossRefGoogle Scholar
  151. Seftel, A.D., Vaziri, N.D., Ni, Z., Razmjouel, K., Fogarty, J., Hampel, H., Polak, J., Wang, R.-Z., Ferguson, K., Block, C., and Haas, C. 1997. Advanced glycation end products in human penis: elevation in diabetic tissue, site of deposition, and possible effect through iNOS or eNOS. Urology 50:1016–1026.PubMedCrossRefGoogle Scholar
  152. Segarra, G., Medina, P., Domenech, C., Martinez Léon, J.B., Vila, J.M., Aldasoro, M., and Lluch, S. 1998. Neurogenic contraction and relaxation of human penile deep dorsal vein. Br. J. Pharmacol. 124:788–794.PubMedCrossRefGoogle Scholar
  153. Simonsen, U., Prieto, D., Delgado, J.A., Hernandez, M., Resel, L., Saenz de Tejada, I., and Garcia-Sacristan, A. 1997. Nitric oxide is involved in the inhibitory neurotransmission and endothelium-dependent relaxations of human small penile arteries. Clin. Sci. 92:269–275.PubMedGoogle Scholar
  154. Simonsen, U., Prieto, D., Saenz de Tejada, I., and Garcia-Sacristan, A. 1995. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K+-channels. Br. J. Pharmacol. 116:2582–2590.PubMedCrossRefGoogle Scholar
  155. Slack, B., and Downie, J.W. 1983. Pharmacological analysis of the responses of the feline urethra to autonomic nerve stimulation. J. Auton. Nerv. Syst. 8:141–160.PubMedCrossRefGoogle Scholar
  156. Smet, P.J., Edyvane, K.A., Jonavicius, J., and Marshall, V.R. 1994. Distribution of NADPH-diaphorase-positive nerves supplying the human urinary bladder. J. Auton. Nerv. Syst. 47:109–113.PubMedCrossRefGoogle Scholar
  157. Smet, P.J., Edyvane, K.A., Jonavicius, J., and Marshall, V.R. 1996a. Neuropeptides and neurotransmitter-synthesizing enzymes in intrinsic neurons of the human urinary bladder. J. Neurocytol. 25:112–124.CrossRefGoogle Scholar
  158. Smet, P.J., Jonavicius, J., Marshall, V.R., and de Vente, J. 1996b. Distribution of nitric oxide synthase-immunoreactive nerves and identification of the cellular targets of nitric oxide in guinea-pig and human urinary bladder by cGMP immunohistochemistry. Neuroscience 71:337–348.CrossRefGoogle Scholar
  159. Smith, S.D., Wheeler, M.A., Foster, H.E., Jr., and Weiss, R.M. 1996. Urinary nitric oxide synthase activity and cyclic GMP levels are decreased with interstitial cystitis and increased with urinary tract infections. J. Urol. 155: 1432–1435.PubMedCrossRefGoogle Scholar
  160. Smith, S.D., Wheeler, M.A., Foster, H.E., Jr., and Weiss, R.M. 1997. Improvement in interstitial cystitis symptom scores during treatment with oral L-arginine. J. Urol. 158:703–708.PubMedCrossRefGoogle Scholar
  161. Smith, S.D., Wheeler, M.A., and Weiss, R.M. 1994. Nitric oxide synthase: an endogenous source of elevated nitrite in infected urine. Kidney Int. 45:586–591.PubMedCrossRefGoogle Scholar
  162. Speakman, M.J., Walmsley, D., and Brading, A.F. 1988. An in vitro pharmacological study of the human trigone—a site of non-adrenergic, non-cholinergic neurotransmission. Br. J. Urol. 61:304–309.PubMedCrossRefGoogle Scholar
  163. Stief, C.G., Taher, A., Truss, M., Ückert, S., Meyer, M., Schulz-Knappe, P., Forssmann, W.F., and Jonas, U. 1995. Die Phosphodiesterase-Isoenzyme des humanen Corpus cavernosum penis und deren funktionelle Bedeutung. Akt. Urol. 26 (Suppl. I):58–61.Google Scholar
  164. Stief, C.G., Ückert, S., Becker, A.J., Truss, M.C., and Jonas, U. 1998. The effect of the specific phosphodiesterase (PDE) inhibitors on human and rabbit cavernous tissue in vitro and in vivo. J. Urol. 159:1390–1394.PubMedCrossRefGoogle Scholar
  165. Suh, J.K., Mun, K.H., Cho, C.K., Shin, H.C., Kim, Y.S., and Park, T.C. 1995. Effect of vasoactive intestinal peptide and acetylcholine on penile erection in the rat in vivo. Int. J. Impotence Res. 7:111–118.Google Scholar
  166. Sullivan, M.E., Bell, C.R., Dashwood, M.R., Miller, M.A., Thompson, C.S., Mikhailidis, D.P., and Morgan, R.J. 1996. Autoradiographic localization of nitric oxide synthase binding sites in normal and diabetic rat corpus cavernosum. Eur. Urol. 30:506–511.PubMedGoogle Scholar
  167. Sutherland, R.S., Kogan, B.A., Piechota, H.J., and Bredt, D.S. 1997. Vesicourethral function in mice with genetic disruption of neuronal nitric oxide synthase. J. Urol. 157:1109–1116.PubMedCrossRefGoogle Scholar
  168. Tamura, M., Kagawa, S., Kimura, K., Kawanishi, Y., Tsuruo, Y., and Ishimura, K. 1995. Coexistence of nitric oxide synthase, tyrosine hydroxylase and vasoactive intestinal polypeptide in human penile tissue—a triple histochemical and immunohistochemical study. J. Urol. 153:530–534.PubMedCrossRefGoogle Scholar
  169. Tamura, M., Kagawa, S., Tsuruo, Y., Ishimura, K., Kimura, K., and Kawanishi, Y. 1997. Localization of NADPH diaphorase and vasoactive intestinal polypeptide-containing neurons in the efferent pathway to the rat corpus cavernosum. Eur. Urol. 32:100–104.PubMedGoogle Scholar
  170. Tanagho, E.A., and Miller, E.R. 1970. Initiation of voiding. Br. J. Urol. 42: 175–183.PubMedCrossRefGoogle Scholar
  171. Tang, P.C., and Ruch, T.C. 1955. Non-neurogenic basis of bladder tonus. Am. J. Physiol. 181:249–257.PubMedGoogle Scholar
  172. Tang, K., Turner, L.A., Ballard, S.A., and Naylor, A.M. 1996. Effects of a novel phosphodiesterase type 5 inhibitor, sildenafil, on methacholine induced relaxation of isolated rabbit corpus cavernosum (abstr). Br. J. Pharmacol. 118:154P.Google Scholar
  173. Theobald, R.J., Jr. 1996. The effect of N G-monomethyl L-arginine on bladder function. Eur. J. Pharmacol. 311:73–76.PubMedCrossRefGoogle Scholar
  174. Thornbury, K.D., Hollywood, M.A., and McHale, N.G. 1992. Mediation by nitric oxide of neurogenic relaxation of the urinary bladder neck muscle in sheep. J. Physiol. (Lond.) 451:133–144.Google Scholar
  175. Torrens, M.J. 1978. Urethral sphincteric responses to stimulation of the sacral nerves in the human female. Urol. Int. 33:22–26.CrossRefGoogle Scholar
  176. Trigo-Rocha, E, Hsu, G.L., Donatucci, C.F., and Lue, T.F. 1993. The role of cyclic adenosine monophosphate, cyclic guanosine monophosphate, endothelium and nonadrenergic, noncholinergic neurotransmission in canine penile erection. J. Urol. 149:872–877.PubMedGoogle Scholar
  177. Trigo-Rocha, F., Hsu, G.L., Donatucci, C.F., Martinez-Pineiro, L., Lue, T.F., and Tanagho, E.A. 1994. Intracellular mechanism of penile erection in monkeys. Neurourol. Urodyn. 13:71–80.PubMedCrossRefGoogle Scholar
  178. Triguero, D., Prieto, D., and Garcia-Pascual, A. 1993. NADPH-diaphorase and NANC relaxations are correlated in the sheep urinary tract. Neurosci. Lett. 163:93–96.PubMedCrossRefGoogle Scholar
  179. Turner, W.H. 1994. Evidence against regulation of bladder compliance by nitric oxide. J. Urol. 151:377A (abstract 598).Google Scholar
  180. Uhler, M.D. 1993. Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J. Biol. Chem. 268:13586–13591.PubMedGoogle Scholar
  181. Ulmsten, U., Andersson, K.-E., and Persson, C.G.A. 1977. Diagnostic and thera-peutic aspects of urge urinary incontinence in women. Urol. Int. 32:88–96.PubMedCrossRefGoogle Scholar
  182. Ulmsten, U., Henriksson, L., and Iosif, S. 1982. The unstable female urethra. Am. J.Obstet. Gynecol. 144:93–96.PubMedGoogle Scholar
  183. Vanhatalo, S., Klinge, E., Sjöstrand, N.O., and Soinila, S. 1996. Nitric oxide-synthesizing neurons originating at several different levels innervate rat penis. Neuroscience 75:891–899.PubMedCrossRefGoogle Scholar
  184. Vanhatalo, S., and Soinila, S. 1995. Direct nitric oxide-containing innervation from the rat spinal cord to the penis. Neurosci. Lett. 199:45–48.PubMedCrossRefGoogle Scholar
  185. Vernet, D., Cai, L., Garban, H., Babbitt, M.L., Murray, F.T., Rajfer, J., and Gonza lezCavidad, N.F. 1995. Reduction of penile nitric oxide synthase in diabetic BB/WORdp (type I) and BBZ/WORdp (type II) rats with erectile dysfunction. Endocrinology 136:5709–5717.PubMedCrossRefGoogle Scholar
  186. Vizzard, M.A., Erdman, S.L., and de Groat, W.C. 1993a. Localization of NADPHdiaphorase in pelvic afferent and efferent pathways of the rat. Neurosci. Lett. 152:72–76.CrossRefGoogle Scholar
  187. Vizzard, M.A., Erdman, S.L., and de Groat, W.C. 1993b. Localization of NADPH diaphorase in bladder afferent and postganglionic efferent neurons in the rat. J. Auton. Nerv. Syst. 44:85–90.CrossRefGoogle Scholar
  188. Vizzard, M.A., Erdman, S.L., and de Groat, W.C. 1996. Increased expression of neuronal nitric oxide synthase in bladder afferent pathways following chronic bladder irritation. J. Comp. Neurol. 370:191–202.PubMedCrossRefGoogle Scholar
  189. Vizzard, M.A., Erdman, S.L., Erickson, V.L., Stewart, R.J., Roppolo, J.R., and de Groat, W.C. 1994a. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat. J. Comp. Neurol. 339:62–75.CrossRefGoogle Scholar
  190. Vizzard, M.A., Erdman, S.L., Förstermann, U., and de Groat, W.C. 1994b. Differential distribution of nitric oxide synthase in neural pathways to the urogenital organs (urethra, penis, urinary bladder) of the rat. Brain Res. 646:279–291.CrossRefGoogle Scholar
  191. Vizzard, M.A., Erickson, K., and de Groat, W.C. 1997. Localization of NADPH diaphorase in the thoracolumbar and sacrococcygeal spinal cord of the dog. J. Auton. Nerv. Syst. 64:128–142.PubMedCrossRefGoogle Scholar
  192. Waldeck, K., Ny, L., Persson, K., and Andersson, K.-E. 1998. Mediators and mechanisms of relaxation in rabbit urethral smooth muscle. Br. J. Pharmacol. 123:617–624.PubMedCrossRefGoogle Scholar
  193. Waldmann, R., Bauer, S., Gobel, C., Hofmann, F., Jakobs, K.H., and Walter, U. 1986. Demonstration of cGMP-dependent protein kinase and cGMP-depen-dent phosphorylation in cell-free extracts of platelets. Eur. J. Biochem. 158:203–210.PubMedCrossRefGoogle Scholar
  194. Weiner, C.P., Lizasoain, I., Baylis, S.A., Knowles, R.G., Charles, LG., and Moncada, S. 1994. Induction of calcium-dependent nitric oxide synthase by sex hormones. Proc. Natl. Acad. Sci USA 91:5212–5216.PubMedCrossRefGoogle Scholar
  195. Weiss, R.M., Nangia, A.K., Smith, S.D., and Wheeler, M.A. 1994. Nitric oxide synthase (NOS) activity in urethra, bladder and bladder smooth muscle cells. Neurourol. Urodyn. 13:397–398.Google Scholar
  196. Werkström, V., Persson, K., Ny, L., Bridgewater, M., Brading, A.F., and Andersson, K.-E. 1995. Factors involved in the relaxation of female pig urethra. Br. J. Phar-macol. 116:1599–1604.CrossRefGoogle Scholar
  197. Wheeler, M.A., Smith, S.D., Saito, N., Foster, H.E., Jr., and Weiss, R.M. 1997. Effect of long-term oral L-arginine on the nitric oxide synthase pathway in the urine from patients with interstitial cystitis. J. Urol. 158:2045–2050.PubMedCrossRefGoogle Scholar
  198. Xie, Y., Garban, H., Ng, C., Rajfer, J., and Gonzalez-Cavidad, N.F. 1997. Effect of long-term passive smoking on erectile function and penile nitric oxide synthase in the rat. J. Urol.157:1121–1126.PubMedCrossRefGoogle Scholar
  199. Yanni, N.C., and Williams, R.G. 1996. L-NAME has no effect on the length-tension relationship of rat detrusor muscle in vitro. Br. J. Pharmacol. 117:205P.Google Scholar
  200. Zinner, N.R., Sterling, A.M., and Ritter, C.R. 1980. Role of inner urethral softness in urinary continence. Urology 16:115–121.PubMedCrossRefGoogle Scholar
  201. Zorgniotti, A.W., and Lizza, E.F.1994. Effect of large doses of the nitric oxide precursor, L-arginine, on erectile function. Int. J. Impotence Res. 6:33–36.Google Scholar
  202. Zvara, E, Sioufi, R., Schipper, H.M., Begin, L.R., and Brock, G.B.1995. Nitric oxide mediated erectile activity is a testosterone dependent event: a rat erection model. Int. J. Impotence Res. 7:209–219.Google Scholar
  203. Zygmunt, P.K.E., Persson, K., Alm, P, Larsson, B., and Andersson, K.-E. 1993a. The L-arginine/nitric oxide pathway in the rabbit urethral lamina propria. Acta Physiol. Scand. 148:431–439.CrossRefGoogle Scholar
  204. Zygmunt, P.M., Zygmunt, P.K.E., Högestätt, E.D., and Andersson, K.-E. 1993b.Effects of ω-conotoxin on adrenergic, cholinergic and NANC neurotransmission in the rabbit urethra and detrusor. Br. J. Pharmacol. 110:1285–1290.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Karl-Erik Andersson

There are no affiliations available

Personalised recommendations