Nitric Oxide Toxicity in Neuronal Injury and Degeneration

  • Alvaro G. Estévez
  • Liliana Viera
  • Andrés Kamaid
  • Joseph S. Beckman
Part of the Nitric Oxide in Biology and Medicine book series (NOBM, volume 2)

Abstract

The aim of this chapter is to analyze growing evidence suggesting that the interaction between oxidative stress, nitric oxide (NO), and peroxynitrite has a role in the induction of motor neuron death during development, after injury, and in pathological conditions such as amyotrophic lateral sclerosis (ALS). We also speculate about the mechanisms of motor neuron death induced by ALS mutant superoxide dismutases (SOD).

Keywords

Zinc Toxicity Tyrosine Superoxide Neurol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Pan, L.-H., Watanabe, M., Kato, T., and Itoyama, Y. 1995. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. 199:152–154.PubMedCrossRefGoogle Scholar
  2. Abe, K., Pan, L.-H., Watanabe, M., Konno, H., Kato, T., and Itoyama, Y. 1997. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol. Res. 19:124–128.PubMedGoogle Scholar
  3. Ang, L.C., Bhaumick, B., and Juurlink, B.H.J. 1993. Neurite promoting activity of insulin, insulin-like growth factor I and nerve growth factor on spinal motoneurons is astrocyte dependent. Dev. Brain Res. 74:83–88.CrossRefGoogle Scholar
  4. Arce, V., Pollock, R., Philippe, J., Pennica, D., Henderson, C., and deLapeyrière, O. 1998. Synergistic effects of Schwann-and muscle-derived factors on motoneuron survival involved GDNF and cardiotrophin- (CT-1). J. Neurosci. 18:1440–1448.PubMedGoogle Scholar
  5. Beal, M.F., Ferrante, R.J., Browne, S.E., Matthews, R.T., Kowall. N.W., and Brown, R.H., Jr. 1997. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42:646–654.CrossRefGoogle Scholar
  6. Beckman, J.S. 1996. Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9:836–844.PubMedCrossRefGoogle Scholar
  7. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.M., and Freeman, B.A. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury by nitric oxide and superoxide. Proc. Natl. Acad. Sci. (USA) 87: 1620–1624.CrossRefGoogle Scholar
  8. Beckman, J.S., Carson, M., Smith, C.D., and Koppenol, W.H. 1993. ALS, SOD and peroxynitrite. Nature 364:584.PubMedCrossRefGoogle Scholar
  9. Beckman, J.S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J., Martin, J.C., and Tsai, M. 1992. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.PubMedCrossRefGoogle Scholar
  10. Beckman, J.S., and Koppenol, W.H. 1996. Nitric oxide, superoxide, and peroxynitrite—the good, the bad, and the ugly. Am. J. Physiol. 271 (Cell Physiol. 40): C1424–C1437.PubMedGoogle Scholar
  11. Bensimon, G., Lacomblez, L., and Meininger, V. 1994. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engt. J. Med. 330:585–591.CrossRefGoogle Scholar
  12. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S.A. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-o-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92:7162–7166.PubMedCrossRefGoogle Scholar
  13. Brown, R.H., Jr. 1996. Superoxide dismutase and familial amyotrophic lateral scle-rosis: new insights into mechanisms and treatments. Ann. Neurol. 39:145–146.PubMedCrossRefGoogle Scholar
  14. Bruijn, L.I., Beal, M.F., Becher, M.W., Schulz, J.B., Wong, P.C., Price, D.L., and Cleveland, D.W. 1997. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94:7606–7611.PubMedCrossRefGoogle Scholar
  15. Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., Reaume, A.G., Scott, R.W., and Cleveland, D.W.1998. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854.PubMedCrossRefGoogle Scholar
  16. Bruning, G., and Mayer, B. 1996. Prenatal development of nitric oxide synthase in the mouse spinal cord. Neurosci. Lett. 202:189–192.PubMedCrossRefGoogle Scholar
  17. Camu, W, and Henderson, C.E. 1992. Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J. Neurosci. Meth. 44:59–70.CrossRefGoogle Scholar
  18. Casanovas, A., Ribera, J., Hukkanen, M., Riveros-Moreno, V., and Esquerda, J.E. 1996. Prevention by Lamotrigine, MK-801 and N omega-nitro-L-arginine methyl ester of motoneuron cell death after neonatal axotomy. Neuroscience 71: 313–325.PubMedCrossRefGoogle Scholar
  19. Chou, S.M., Wang, H.S., and Komai, K. 1996a. Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J. Chem. Neuroanat. 10:249–258.CrossRefGoogle Scholar
  20. Chou, S.M., Wang, H.S., and Taniguchi, A. 1996b. Role of SOD-1 and nitric oxide/cyclic GMP cascade on neurofilament aggregation in ALS/MND. J. Neurol. Sci. 139 (Suppl.):16–26.CrossRefGoogle Scholar
  21. Crow, J.P. 1997. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide: 1:145–157.PubMedCrossRefGoogle Scholar
  22. Crow, J.P., and Beckman, J.S. 1995. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr. Top. Microbiol. Immunol. 196:57–73.PubMedCrossRefGoogle Scholar
  23. Crow, J.P., Sampson, J.B., Zhuang, Y., Thompson, J.A., and Beckman, J.S. 1997. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dis-mutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. 69:1936–1944.PubMedCrossRefGoogle Scholar
  24. Dal Canto, M.C., and Gurney, M.E. 1995. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu/Zn SOD, and in mice over-expressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676:25–40.PubMedCrossRefGoogle Scholar
  25. Dawson, V., Dawson, T., Bartley, D., Uhl, G., and Snyder, S. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651–2661.PubMedGoogle Scholar
  26. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S., and Snyder, S.H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368–6371.PubMedCrossRefGoogle Scholar
  27. deBilbao, F., and Dubois-Dauphin, M. 1996. Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bc1–2 transgenic mice. Neuroscience 71:1–2.CrossRefGoogle Scholar
  28. Deckwerth, T.L. 1997. Molecular mechanisms of neuroprotection from neuronal death by trophic factor deprivation. In: (ed. M.P. Mattson) Neuroprotective Signal Transduction, pp. 61–82. Humana Press, Totowa, NJ.CrossRefGoogle Scholar
  29. deLapeyriere, O., and Henderson, C. 1997. Motoneuron differentiation, survival and synaptogenesis. Curr. Opin. Genet. Dev. 7:642–650.PubMedCrossRefGoogle Scholar
  30. Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J., and Martinou, J. 1994. Neonatal motoneurons overexpressing the bd-2 protooncogene in trans-genic mice are protected from axotomy-induced cell death. Proc. Natl. Acad. Sci. USA 91:3309–3313.PubMedCrossRefGoogle Scholar
  31. Durham, H.D., Roy, J., Dong, L., and Figlewicz, D.A. 1997. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56:523–530.PubMedCrossRefGoogle Scholar
  32. Estévez, A.G., Stutzmann, J.-M., and Barbeito, L. 1995. Protective effect of riluzole on excitatory amino acid-mediated neurotoxicity in motoneuron-enriched cultures. Eur. J. Pharmacol. 280:47–53.PubMedCrossRefGoogle Scholar
  33. Estévez, A.G., Spear, N., Manuel, S.M., Barbeito, L., Radi, R., and Beckman, J.S. 1998a. Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture. In: (eds. T.M. Dawson, V.L. Dawson, and M.J. Friedlander), pp. 269–280. Prog. Brain Res. Elsevier, NY.Google Scholar
  34. Estévez, A.G., Spear, N., Manuel, S.M., Radi, R., Henderson, C.E.. Barbeito, L. and Beckman, J.S. 1998b. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18:923–931.PubMedGoogle Scholar
  35. Estévez, A.G., Spear, N., Thompson, J.A., Cornwell, T.L., Radi, R., Barbeito, L., and Beckman, J.S. 1998c. Nitric oxide dependent production of cGMP supports survival of rat embryonic motor neurons cultured with brain derived neurotrophic factor../. Neurosci. 18:3708–3714.Google Scholar
  36. Estévez, A.G., Crow, J.P., Sampson, J.B., Reiter, C., Zhuang, Y.-X., Richardson, G.J., Tarpey, M.M., Barbeito, L., and Beckman, J.S. 1999. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500.PubMedCrossRefGoogle Scholar
  37. Estévez, A.G., Sampson, J.B., Zhuang, Y., Spear, N., Richardson, G.J., Crow, J.P., Tarpey, M.M., Barbeito, L., and Beckman, J.S. 2000. Liposome-delivered superoxide dismutase prevents nitric-oxide dependent motor neuron death induced by trophic factor withdrawal. Free Rad. Biol. Med. 28(3):437–446.PubMedCrossRefGoogle Scholar
  38. Faulkner, K.M., Liochev, S.I., and Fridovich, I. 1994. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269:23471–23476.PubMedGoogle Scholar
  39. Ferrante, R.J., Browne, S.E., Shinobu, L.A., Bowling, A.C., Baik, M.J., MacGarvey, U., Kowall, N.W., Brown, R.H., Jr., and Beal, M.F. 1997a. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69:2064–2074.PubMedCrossRefGoogle Scholar
  40. Ferrante, R.J., Shinobu, L.A., Schulz, J.B., Matthews, R.T., Thomas, C.E., Kowall, N.W., Gurney, M.E., and Beal, M.F. 1997b. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann. Neurol. 42:326–334.PubMedCrossRefGoogle Scholar
  41. Forman, J.H., and Fridovich, I. 1973. On the stability of bovine superoxide dismutase. J. Biol. Chem. 248:2645–2649.PubMedGoogle Scholar
  42. Garthwaite, J., Charles, S.L., and Chess-Williams, R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature (Lond.) 336:385–388.CrossRefGoogle Scholar
  43. Garthwaite, J., Sotham, E., Boulton, C.L., Nielsen, E.B., Schmidt, K., and Mayer, B. 1996. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Biochem. Pharmacol. 48: 184–188.Google Scholar
  44. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Corto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.-X., Chen, W., Zhai, E, Sufit, R.L., and Siddique, T. 1994. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 264:1772–1775.PubMedCrossRefGoogle Scholar
  45. Hanson, M.G., Shen, S., Wiemelt, A.P., McMorris, EA., and Barres, B.A. 1998. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18:7361–7371.PubMedGoogle Scholar
  46. Henderson, C. 1996. Role of neurotrophic factors in neuronal development. Curt: Opin. Neurobiol. 6:64–70.CrossRefGoogle Scholar
  47. Henderson, C.E., Bloch-Gallego, E., and Camu, W. 1995. Purification and culture of embryonic motorneurons. In: (eds. J. Cohen and G. Wilkin) Neural Cell Culture: A Practical Approach, pp. 69–81. IRL Press, Oxford.Google Scholar
  48. Henderson, C.E., Camu, W., Mettling, C., Gouin, A., Poulsen, K., Karihaloo, M., Rullamas, J., Evans, T., McMahon, S.B., Armanini, M.P., Berkemeier, L., Phillips, H.S., and Rosenthal, A. 1993. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–270.PubMedCrossRefGoogle Scholar
  49. Henderson, C.E., Phillips, H.S., Pollock, R.A., Davies, A.M., Lemeulle, C., Armanini, M., Simpson, L.C., Moffet, B., Vandlen, R.A., Koliatsos, V.E., and Rosenthal, A. 1994. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064.PubMedCrossRefGoogle Scholar
  50. Hughes, R.A., Sendtner, M., and Thoenen, H. 1993. Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res. 36:663–671.PubMedCrossRefGoogle Scholar
  51. Huie, R.E., and Padmaja, S. 1993. The reaction rate of nitric oxide with superoxide. Free Rad. Res. Commun. 18:195–199.CrossRefGoogle Scholar
  52. Ignarro, L.J. 1990. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30:535–560.PubMedCrossRefGoogle Scholar
  53. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84:9265–9269.PubMedCrossRefGoogle Scholar
  54. Ikeda, K., Iwasaki, Y., and Kinoshita, M. 1998. Neuronal nitric oxide synthase inhibitor, 7-nitroindazol, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse. J. Neurol. Sci 160:9–15.PubMedCrossRefGoogle Scholar
  55. Ischiropoulos, H., Zhu, L., Chen, J., Tsai, H.M., Martin, J.C., Smith, C.D., and Beckman, J.S. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298:431–437.PubMedCrossRefGoogle Scholar
  56. Kissner, R., Nauser, T., Bugnon, P., Lye, P.G., and Koppenol, W.H. 1997. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10:1285–1292. PubMedCrossRefGoogle Scholar
  57. Kooy, N.W., Royall, J.A., and Ischiropoulos, H. 1997. Oxidation of 2’,7’dichlorofluorescin by peroxynitrite. Free Rad. Res. 27:245–254.CrossRefGoogle Scholar
  58. Lacomblez, L., Bensimon, G., Leigh, RN., Guillet, P., and Meininger, V. 1996. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet 347:1425–1431.PubMedGoogle Scholar
  59. Mettling, C., Gouin, A., Robinson, M., M’Hamdi, H.E., Camu, W., Bloch-Gallego, E., Buisson, B., Tanaka, H., Davies, A.M., and Henderson, C.E. 1995. Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support. J. Neurosci. 15:3128–3137.PubMedGoogle Scholar
  60. Milligan, C.E., Oppenheim, R.W., and Schwartz, L.M. 1994. Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J. Neurobiol. 25:1005–1016.PubMedCrossRefGoogle Scholar
  61. Milligan, C.E., Prevette, D., Yaginuma, H., Homma, S., Cardwell, C., Fritz, L.C., Tomaselli, K.J., Oppenheim, R.W., and Scwartz, L.M. 1995. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 15:385–393.PubMedCrossRefGoogle Scholar
  62. Nicholson, D.W., and Thornberry, N.A. 1997. Caspases: killer proteases. TIBS 22:299–306.PubMedGoogle Scholar
  63. Novikov, L., Novikova, L., and Kellerth, J.-O. 1995. Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci. Lett. 200:45–48.PubMedCrossRefGoogle Scholar
  64. Novikov, L., Novikova, L., and Kellerth, J.-O. 1997. Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79:765–774.PubMedCrossRefGoogle Scholar
  65. Oppenheim, R. 1996. Neurotrophic survival molecules for motor neurons: an embarrassment of riches. Neuron 17:195–197. PubMedCrossRefGoogle Scholar
  66. Oppenheim, R.W., Qin-Wei, Y., Prevett, D., and Yan, Q. 1992. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360:755.PubMedCrossRefGoogle Scholar
  67. Palmer, R.M.J., Ferrige, A.G., and Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.) 327:523–526.CrossRefGoogle Scholar
  68. Pantoliano, M.W., McDonnell, P.J., and Valentine, J.S. 1979. Reversible loss of metal ions from the zinc binding site of copper-zinc superoxide dismutase. The low pH transition. J. Am. Chem. Soc. 101:6454–6456.CrossRefGoogle Scholar
  69. Peluffo, H., Estévez, A., Barbeito, L., and Stutzmann, J.M. 1997. Riluzole promotes motoneuron survival by stimulating trophic activity produced by spinal astrocyte monolayers. Neurosci. Lett. 228:207–211.PubMedCrossRefGoogle Scholar
  70. Pennica, D., Arce, V., Swanson, T.A., Vejsada, R., Pollock, R.A., Armanini, M., Dudley, K., Phillips, H.S., Rosenthal, A., Kato, A.C., and Henderson, C.E. 1996. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17:63–74.PubMedCrossRefGoogle Scholar
  71. Prevette, D., Wang, S., and Oppenheim, R.W. 1998. Nitric oxide and the programmed cell death of developing avian motoneurons. Soc. Neurosci. Abst. 13:708.Google Scholar
  72. Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Wilcox, H.M., Flood, D.G., Beal, M.F., Brown, R.H., Jr., Scott, R.W., and Snider, W.D. 1996. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13: 43–47.PubMedCrossRefGoogle Scholar
  73. Riviere, M., Meininger, V., Ziesser, E, and Munsat, T.1998. An analysis of extended survival in patients with amyotrophic lateral sclerosis treated with riluzole. Arch. Neurol. 55:526–528.PubMedCrossRefGoogle Scholar
  74. Ruan, R.-S., Leong, S.-K., and Yeoh, K.-H. 1995. The role of nitric oxide in facial motoneuronal death. Brain Res. 698:163–168.PubMedCrossRefGoogle Scholar
  75. Schuman, E.M., and Madison, D.V. 1994. Nitric oxide and synaptic function. Annu. Rev. Neurosci. 17:153–183.PubMedCrossRefGoogle Scholar
  76. Wu, W. 1993. Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp. Neurol. 120:153–159.PubMedCrossRefGoogle Scholar
  77. Wu, W., and Li, L. 1993 Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neurosci. Lett. 153:121–124.PubMedCrossRefGoogle Scholar
  78. Wu, W, Liuzzi, F.J., Schinco, EP., Dpeto, A.S., Li, Y., Mong, J.A., Dawson, T.M., and Snyder, S.H. 1994. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience 61:719–726.PubMedCrossRefGoogle Scholar
  79. Yu, W.-H.A. 1994. Nitric oxide synthase in motor neurons after axotomy. J. Histochem. Cytochem. 42:451–457.PubMedCrossRefGoogle Scholar
  80. Zhang, J., and Snyder, S.H. 1995. Nitric oxide in the nervous system. Annu. Rev. Pharmacol. Toxicol. 35:213–233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Alvaro G. Estévez
  • Liliana Viera
  • Andrés Kamaid
  • Joseph S. Beckman

There are no affiliations available

Personalised recommendations