Skip to main content

Part of the book series: Nitric Oxide in Biology and Medicine ((NOBM,volume 2))

  • 66 Accesses

Abstract

The aim of this chapter is to analyze growing evidence suggesting that the interaction between oxidative stress, nitric oxide (NO), and peroxynitrite has a role in the induction of motor neuron death during development, after injury, and in pathological conditions such as amyotrophic lateral sclerosis (ALS). We also speculate about the mechanisms of motor neuron death induced by ALS mutant superoxide dismutases (SOD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Pan, L.-H., Watanabe, M., Kato, T., and Itoyama, Y. 1995. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci. Lett. 199:152–154.

    Article  PubMed  CAS  Google Scholar 

  • Abe, K., Pan, L.-H., Watanabe, M., Konno, H., Kato, T., and Itoyama, Y. 1997. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol. Res. 19:124–128.

    PubMed  CAS  Google Scholar 

  • Ang, L.C., Bhaumick, B., and Juurlink, B.H.J. 1993. Neurite promoting activity of insulin, insulin-like growth factor I and nerve growth factor on spinal motoneurons is astrocyte dependent. Dev. Brain Res. 74:83–88.

    Article  CAS  Google Scholar 

  • Arce, V., Pollock, R., Philippe, J., Pennica, D., Henderson, C., and deLapeyrière, O. 1998. Synergistic effects of Schwann-and muscle-derived factors on motoneuron survival involved GDNF and cardiotrophin- (CT-1). J. Neurosci. 18:1440–1448.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Ferrante, R.J., Browne, S.E., Matthews, R.T., Kowall. N.W., and Brown, R.H., Jr. 1997. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42:646–654.

    Article  Google Scholar 

  • Beckman, J.S. 1996. Oxidative damage and tyrosine nitration from peroxynitrite. Chem. Res. Toxicol. 9:836–844.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.M., and Freeman, B.A. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury by nitric oxide and superoxide. Proc. Natl. Acad. Sci. (USA) 87: 1620–1624.

    Article  CAS  Google Scholar 

  • Beckman, J.S., Carson, M., Smith, C.D., and Koppenol, W.H. 1993. ALS, SOD and peroxynitrite. Nature 364:584.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J.S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., Harrison, J., Martin, J.C., and Tsai, M. 1992. Kinetics of superoxide dismutase-and iron-catalyzed nitration of phenolics by peroxynitrite. Arch. Biochem. Biophys. 298:438–445.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J.S., and Koppenol, W.H. 1996. Nitric oxide, superoxide, and peroxynitrite—the good, the bad, and the ugly. Am. J. Physiol. 271 (Cell Physiol. 40): C1424–C1437.

    PubMed  CAS  Google Scholar 

  • Bensimon, G., Lacomblez, L., and Meininger, V. 1994. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engt. J. Med. 330:585–591.

    Article  CAS  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., and Lipton, S.A. 1995. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-o-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92:7162–7166.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.H., Jr. 1996. Superoxide dismutase and familial amyotrophic lateral scle-rosis: new insights into mechanisms and treatments. Ann. Neurol. 39:145–146.

    Article  PubMed  Google Scholar 

  • Bruijn, L.I., Beal, M.F., Becher, M.W., Schulz, J.B., Wong, P.C., Price, D.L., and Cleveland, D.W. 1997. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94:7606–7611.

    Article  PubMed  CAS  Google Scholar 

  • Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., Reaume, A.G., Scott, R.W., and Cleveland, D.W.1998. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854.

    Article  PubMed  CAS  Google Scholar 

  • Bruning, G., and Mayer, B. 1996. Prenatal development of nitric oxide synthase in the mouse spinal cord. Neurosci. Lett. 202:189–192.

    Article  PubMed  CAS  Google Scholar 

  • Camu, W, and Henderson, C.E. 1992. Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J. Neurosci. Meth. 44:59–70.

    Article  CAS  Google Scholar 

  • Casanovas, A., Ribera, J., Hukkanen, M., Riveros-Moreno, V., and Esquerda, J.E. 1996. Prevention by Lamotrigine, MK-801 and N omega-nitro-L-arginine methyl ester of motoneuron cell death after neonatal axotomy. Neuroscience 71: 313–325.

    Article  PubMed  CAS  Google Scholar 

  • Chou, S.M., Wang, H.S., and Komai, K. 1996a. Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J. Chem. Neuroanat. 10:249–258.

    Article  CAS  Google Scholar 

  • Chou, S.M., Wang, H.S., and Taniguchi, A. 1996b. Role of SOD-1 and nitric oxide/cyclic GMP cascade on neurofilament aggregation in ALS/MND. J. Neurol. Sci. 139 (Suppl.):16–26.

    Article  Google Scholar 

  • Crow, J.P. 1997. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide: 1:145–157.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.P., and Beckman, J.S. 1995. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr. Top. Microbiol. Immunol. 196:57–73.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.P., Sampson, J.B., Zhuang, Y., Thompson, J.A., and Beckman, J.S. 1997. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dis-mutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J. Neurochem. 69:1936–1944.

    Article  PubMed  CAS  Google Scholar 

  • Dal Canto, M.C., and Gurney, M.E. 1995. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu/Zn SOD, and in mice over-expressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res. 676:25–40.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V., Dawson, T., Bartley, D., Uhl, G., and Snyder, S. 1993. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13: 2651–2661.

    PubMed  CAS  Google Scholar 

  • Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S., and Snyder, S.H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88:6368–6371.

    Article  PubMed  CAS  Google Scholar 

  • deBilbao, F., and Dubois-Dauphin, M. 1996. Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bc1–2 transgenic mice. Neuroscience 71:1–2.

    Article  CAS  Google Scholar 

  • Deckwerth, T.L. 1997. Molecular mechanisms of neuroprotection from neuronal death by trophic factor deprivation. In: (ed. M.P. Mattson) Neuroprotective Signal Transduction, pp. 61–82. Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  • deLapeyriere, O., and Henderson, C. 1997. Motoneuron differentiation, survival and synaptogenesis. Curr. Opin. Genet. Dev. 7:642–650.

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J., and Martinou, J. 1994. Neonatal motoneurons overexpressing the bd-2 protooncogene in trans-genic mice are protected from axotomy-induced cell death. Proc. Natl. Acad. Sci. USA 91:3309–3313.

    Article  PubMed  CAS  Google Scholar 

  • Durham, H.D., Roy, J., Dong, L., and Figlewicz, D.A. 1997. Aggregation of mutant Cu/Zn superoxide dismutase proteins in a culture model of ALS. J. Neuropathol. Exp. Neurol. 56:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Estévez, A.G., Stutzmann, J.-M., and Barbeito, L. 1995. Protective effect of riluzole on excitatory amino acid-mediated neurotoxicity in motoneuron-enriched cultures. Eur. J. Pharmacol. 280:47–53.

    Article  PubMed  Google Scholar 

  • Estévez, A.G., Spear, N., Manuel, S.M., Barbeito, L., Radi, R., and Beckman, J.S. 1998a. Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture. In: (eds. T.M. Dawson, V.L. Dawson, and M.J. Friedlander), pp. 269–280. Prog. Brain Res. Elsevier, NY.

    Google Scholar 

  • Estévez, A.G., Spear, N., Manuel, S.M., Radi, R., Henderson, C.E.. Barbeito, L. and Beckman, J.S. 1998b. Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J. Neurosci. 18:923–931.

    PubMed  Google Scholar 

  • Estévez, A.G., Spear, N., Thompson, J.A., Cornwell, T.L., Radi, R., Barbeito, L., and Beckman, J.S. 1998c. Nitric oxide dependent production of cGMP supports survival of rat embryonic motor neurons cultured with brain derived neurotrophic factor../. Neurosci. 18:3708–3714.

    Google Scholar 

  • Estévez, A.G., Crow, J.P., Sampson, J.B., Reiter, C., Zhuang, Y.-X., Richardson, G.J., Tarpey, M.M., Barbeito, L., and Beckman, J.S. 1999. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500.

    Article  PubMed  Google Scholar 

  • Estévez, A.G., Sampson, J.B., Zhuang, Y., Spear, N., Richardson, G.J., Crow, J.P., Tarpey, M.M., Barbeito, L., and Beckman, J.S. 2000. Liposome-delivered superoxide dismutase prevents nitric-oxide dependent motor neuron death induced by trophic factor withdrawal. Free Rad. Biol. Med. 28(3):437–446.

    Article  PubMed  Google Scholar 

  • Faulkner, K.M., Liochev, S.I., and Fridovich, I. 1994. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 269:23471–23476.

    PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Browne, S.E., Shinobu, L.A., Bowling, A.C., Baik, M.J., MacGarvey, U., Kowall, N.W., Brown, R.H., Jr., and Beal, M.F. 1997a. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69:2064–2074.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, R.J., Shinobu, L.A., Schulz, J.B., Matthews, R.T., Thomas, C.E., Kowall, N.W., Gurney, M.E., and Beal, M.F. 1997b. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann. Neurol. 42:326–334.

    Article  PubMed  CAS  Google Scholar 

  • Forman, J.H., and Fridovich, I. 1973. On the stability of bovine superoxide dismutase. J. Biol. Chem. 248:2645–2649.

    PubMed  CAS  Google Scholar 

  • Garthwaite, J., Charles, S.L., and Chess-Williams, R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature (Lond.) 336:385–388.

    Article  CAS  Google Scholar 

  • Garthwaite, J., Sotham, E., Boulton, C.L., Nielsen, E.B., Schmidt, K., and Mayer, B. 1996. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Biochem. Pharmacol. 48: 184–188.

    Google Scholar 

  • Gurney, M.E., Pu, H., Chiu, A.Y., Dal Corto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.-X., Chen, W., Zhai, E, Sufit, R.L., and Siddique, T. 1994. Motor neuron degeneration in mice that express a human Cu/Zn superoxide dismutase mutation. Science 264:1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M.G., Shen, S., Wiemelt, A.P., McMorris, EA., and Barres, B.A. 1998. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18:7361–7371.

    PubMed  CAS  Google Scholar 

  • Henderson, C. 1996. Role of neurotrophic factors in neuronal development. Curt: Opin. Neurobiol. 6:64–70.

    Article  CAS  Google Scholar 

  • Henderson, C.E., Bloch-Gallego, E., and Camu, W. 1995. Purification and culture of embryonic motorneurons. In: (eds. J. Cohen and G. Wilkin) Neural Cell Culture: A Practical Approach, pp. 69–81. IRL Press, Oxford.

    Google Scholar 

  • Henderson, C.E., Camu, W., Mettling, C., Gouin, A., Poulsen, K., Karihaloo, M., Rullamas, J., Evans, T., McMahon, S.B., Armanini, M.P., Berkemeier, L., Phillips, H.S., and Rosenthal, A. 1993. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–270.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, C.E., Phillips, H.S., Pollock, R.A., Davies, A.M., Lemeulle, C., Armanini, M., Simpson, L.C., Moffet, B., Vandlen, R.A., Koliatsos, V.E., and Rosenthal, A. 1994. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R.A., Sendtner, M., and Thoenen, H. 1993. Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res. 36:663–671.

    Article  PubMed  CAS  Google Scholar 

  • Huie, R.E., and Padmaja, S. 1993. The reaction rate of nitric oxide with superoxide. Free Rad. Res. Commun. 18:195–199.

    Article  CAS  Google Scholar 

  • Ignarro, L.J. 1990. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30:535–560.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84:9265–9269.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, K., Iwasaki, Y., and Kinoshita, M. 1998. Neuronal nitric oxide synthase inhibitor, 7-nitroindazol, delays motor dysfunction and spinal motoneuron degeneration in the wobbler mouse. J. Neurol. Sci 160:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, H.M., Martin, J.C., Smith, C.D., and Beckman, J.S. 1992. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch. Biochem. Biophys. 298:431–437.

    Article  PubMed  CAS  Google Scholar 

  • Kissner, R., Nauser, T., Bugnon, P., Lye, P.G., and Koppenol, W.H. 1997. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem. Res. Toxicol. 10:1285–1292.

    Article  PubMed  CAS  Google Scholar 

  • Kooy, N.W., Royall, J.A., and Ischiropoulos, H. 1997. Oxidation of 2’,7’dichlorofluorescin by peroxynitrite. Free Rad. Res. 27:245–254.

    Article  CAS  Google Scholar 

  • Lacomblez, L., Bensimon, G., Leigh, RN., Guillet, P., and Meininger, V. 1996. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet 347:1425–1431.

    PubMed  CAS  Google Scholar 

  • Mettling, C., Gouin, A., Robinson, M., M’Hamdi, H.E., Camu, W., Bloch-Gallego, E., Buisson, B., Tanaka, H., Davies, A.M., and Henderson, C.E. 1995. Survival of newly postmitotic motoneurons is transiently independent of exogenous trophic support. J. Neurosci. 15:3128–3137.

    PubMed  CAS  Google Scholar 

  • Milligan, C.E., Oppenheim, R.W., and Schwartz, L.M. 1994. Motoneurons deprived of trophic support in vitro require new gene expression to undergo programmed cell death. J. Neurobiol. 25:1005–1016.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, C.E., Prevette, D., Yaginuma, H., Homma, S., Cardwell, C., Fritz, L.C., Tomaselli, K.J., Oppenheim, R.W., and Scwartz, L.M. 1995. Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 15:385–393.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D.W., and Thornberry, N.A. 1997. Caspases: killer proteases. TIBS 22:299–306.

    PubMed  CAS  Google Scholar 

  • Novikov, L., Novikova, L., and Kellerth, J.-O. 1995. Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci. Lett. 200:45–48.

    Article  PubMed  CAS  Google Scholar 

  • Novikov, L., Novikova, L., and Kellerth, J.-O. 1997. Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79:765–774.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R. 1996. Neurotrophic survival molecules for motor neurons: an embarrassment of riches. Neuron 17:195–197.

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim, R.W., Qin-Wei, Y., Prevett, D., and Yan, Q. 1992. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360:755.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., Ferrige, A.G., and Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.) 327:523–526.

    Article  Google Scholar 

  • Pantoliano, M.W., McDonnell, P.J., and Valentine, J.S. 1979. Reversible loss of metal ions from the zinc binding site of copper-zinc superoxide dismutase. The low pH transition. J. Am. Chem. Soc. 101:6454–6456.

    Article  CAS  Google Scholar 

  • Peluffo, H., Estévez, A., Barbeito, L., and Stutzmann, J.M. 1997. Riluzole promotes motoneuron survival by stimulating trophic activity produced by spinal astrocyte monolayers. Neurosci. Lett. 228:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Pennica, D., Arce, V., Swanson, T.A., Vejsada, R., Pollock, R.A., Armanini, M., Dudley, K., Phillips, H.S., Rosenthal, A., Kato, A.C., and Henderson, C.E. 1996. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17:63–74.

    Article  PubMed  CAS  Google Scholar 

  • Prevette, D., Wang, S., and Oppenheim, R.W. 1998. Nitric oxide and the programmed cell death of developing avian motoneurons. Soc. Neurosci. Abst. 13:708.

    Google Scholar 

  • Reaume, A.G., Elliott, J.L., Hoffman, E.K., Kowall, N.W., Ferrante, R.J., Siwek, D.F., Wilcox, H.M., Flood, D.G., Beal, M.F., Brown, R.H., Jr., Scott, R.W., and Snider, W.D. 1996. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Riviere, M., Meininger, V., Ziesser, E, and Munsat, T.1998. An analysis of extended survival in patients with amyotrophic lateral sclerosis treated with riluzole. Arch. Neurol. 55:526–528.

    Article  PubMed  CAS  Google Scholar 

  • Ruan, R.-S., Leong, S.-K., and Yeoh, K.-H. 1995. The role of nitric oxide in facial motoneuronal death. Brain Res. 698:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Schuman, E.M., and Madison, D.V. 1994. Nitric oxide and synaptic function. Annu. Rev. Neurosci. 17:153–183.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W. 1993. Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp. Neurol. 120:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W., and Li, L. 1993 Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neurosci. Lett. 153:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W, Liuzzi, F.J., Schinco, EP., Dpeto, A.S., Li, Y., Mong, J.A., Dawson, T.M., and Snyder, S.H. 1994. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience 61:719–726.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W.-H.A. 1994. Nitric oxide synthase in motor neurons after axotomy. J. Histochem. Cytochem. 42:451–457.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., and Snyder, S.H. 1995. Nitric oxide in the nervous system. Annu. Rev. Pharmacol. Toxicol. 35:213–233.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Estévez, A.G., Viera, L., Kamaid, A., Beckman, J.S. (2000). Nitric Oxide Toxicity in Neuronal Injury and Degeneration. In: Kalsner, S. (eds) Nitric Oxide and Free Radicals in Peripheral Neurotransmission. Nitric Oxide in Biology and Medicine, vol 2. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1328-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1328-4_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7096-6

  • Online ISBN: 978-1-4612-1328-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics