Skip to main content

The Multilevel Method of Dependent Tests

  • Chapter
Advances in Stochastic Simulation Methods

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

Approximation properties of the underlying estimator are used to improve the efficiency of the method of dependent tests. A multilevel approximation procedure is developed such that in each level the number of samples is balanced with the level-dependent variance, resulting in a considerable reduction of the overall computational cost. The new technique is applied to the Monte Carlo estimation of integrals depending on a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. A. (1975). Sobolev Spaces, New York: Academic Press.

    MATH  Google Scholar 

  2. Ciarlet, P. G. (1978). The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland.

    MATH  Google Scholar 

  3. Ermakov, S. M. and Mikhailov, G. A. (1982). Statistical Modelling, Moscow: Nauka (in Russian).

    Google Scholar 

  4. Frolov, A. S. and Chentsov, N. N. (1962). On the calculation of certain integrals dependent on a parameter by the Monte Carlo method, Zh. Vychisl. Mat. Mat. Fiz., 2 714–717 (in Russian).

    Google Scholar 

  5. Heinrich, S. (1994). Random approximation in numerical analysis, In Functional Analysis, (Eds., Bierstedt, K. D., Pietsch, A., Ruess, W. M. and Vogt, D.), pp. 123–171, New York, Basel, Hong Kong: Marcel Dekker.

    Google Scholar 

  6. Heinrich, S. (1998a). Monte Carlo complexity of global solution of integral equations, J. Complexity, 14 151–175.

    Article  MathSciNet  MATH  Google Scholar 

  7. Heinrich, S. (1998b). A multilevel version of the method of dependent tests, In Proceedings of the 3rd St. Petersburg Workshop on Simulation (collection of extended abstracts) (Eds., Ermakov, S. M., Kashtanov, Y. N. and Melas, V. B.), pp. 31–35, St. Petersburg: St. Petersburg University Press.

    Google Scholar 

  8. Heinrich, S. (1998c). Wavelet Monte Carlo methods for the global solution of integral equations, In Proceedings of the Third International Conference on Monte Carlo and Quasi-Monte Carlo Methods, Claremont, 1998 (Eds., Niederreiter, H. and Spanier, J.) (to appear).

    Google Scholar 

  9. Heinrich, S. and Sindambiwe, E. (1999). Monte Carlo complexity of parametric integration, J. Complexity, (to appear).

    Google Scholar 

  10. Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces, Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  11. Mikhailov, G. A. (1991). Minimization of Computational Costs of Non-Analogue Monte Carlo Methods, Singapore: World Scientific.

    Google Scholar 

  12. Novak, E. (1988). Deterministic and Stochastic Error Bounds in Numerical Analysis, Lecture Notes in Mathematics, 1349 Berlin, Heidelberg, New York: Springer-Verlag.

    Google Scholar 

  13. Pietsch, A. (1987). Eigenvalues and s-Numbers, Leipzig: Geest and Portig, and Cambridge: Cambridge University Press.

    Google Scholar 

  14. Prigarin, S. M. (1995). Convergence and optimization of functional estimates in statistical modelling in Sobolev’s Hilbert spaces, Russian J. Numer. Anal. Math. Modelling, 10, 325–346.

    Article  MathSciNet  MATH  Google Scholar 

  15. Sobol, I. M. (1962). The use of w 2-distribution for error estimation in the calculation of integrals by the Monte Carlo method, U.S.S.R. Comput. Math. and Math. Phys., 2 717–723.

    MathSciNet  Google Scholar 

  16. Sobol, I. M. (1973). Computational Monte Carlo Methods, Moscow: Nauka (in Russian).

    Google Scholar 

  17. Traub, J. F., Wasilkowski, G. W. and Woiniakowski, H. (1988). Information-Based Complexity, New York: Academic Press.

    MATH  Google Scholar 

  18. Voytishek, A. V. (1996). Discrete-stochastic procedures for the global estimation of an integral which depends on a paramter, Comp. Maths Math. Phys., 36 997–1009.

    Google Scholar 

  19. Voytishek, A. V. (1997). Using the Strang-Fix approximation in discrete-stochastic numerical procedures, Monte Carlo Methods and Applications,3 89–112.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heinrich, S. (2000). The Multilevel Method of Dependent Tests. In: Balakrishnan, N., Melas, V.B., Ermakov, S. (eds) Advances in Stochastic Simulation Methods. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1318-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1318-5_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7091-1

  • Online ISBN: 978-1-4612-1318-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics