Algebraic Cycles and Motives: An Introduction

  • Robert Laterveer
Conference paper
Part of the Trends in Mathematics book series (TM)


This is the written-up version of the lectures I gave in Bologna. It is a pleasure to thank the organizers for doing such a fine job, in such a lovely location.


Cohomology Group Chow Group Hodge Number Algebraic Cycle Mixed Motive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ba]
    L. Barbieri—Viale, Des invariants birationnels associés aux théories cohomologiques, C. R. Acad. Sci. Paris 315 (1992), 1259–1262MathSciNetGoogle Scholar
  2. [Bl]
    S. Bloch, Lectures on algebraic cycles, Duke Univ. Math. Ser. 4, Durham 1980Google Scholar
  3. [B–K–L]
    S. Bloch, A. Kas and D. Lieberman, Zero-cycles on surfaces with P g = 0, Comp. Math. 33(1976), 135–145MathSciNetMATHGoogle Scholar
  4. [B–O]
    S. Bloch and A. Ogus, Gersten’s conjecture and the homol-ogy of schemes, Ann. Scient. de l’E.N.S. 4e série 7 (1974), 181–202MathSciNetMATHGoogle Scholar
  5. [C–H]
    A. Corti and M. Hanamura, Motivic decomposition and in-tersection Chow groups I, preprint 1998Google Scholar
  6. [C–H–K]
    J.-L. Colliot-Thélène, R. Hoobler and B. Kahn, The Bloch- Ogus–Gabber theorem, in: The Fields Institute Communications Vol. 16 (1997)Google Scholar
  7. [E–V]
    H. Esnault and E. Viehweg, Deligne–Beilinson cohomology, in: Beilinson’s conjectures on special values of L-functions (M. Rapoport, N. Schappacher and P. Schneider, eds.), Academic Press 1988Google Scholar
  8. [Fu]
    W. Fulton, Intersection theory, Springer—Verlag, 1984Google Scholar
  9. [Gi]
    H. Gillet, Deligne homology and Abel-Jacobi maps, Bulletin of the AMS Vol. 10 No. 2 (1984), 285–288MATHCrossRefGoogle Scholar
  10. [Gri]
    P. Griffiths, ed., Topics in transcendental algebraic geome- try, Annals of Mathematics Study 106, Princeton University Press, 1984Google Scholar
  11. [Gr]
    A. Grothendieck, Hodge’s general conjecture is false for triv-ial reasons, Topology 8 (1969), 299–303MathSciNetMATHCrossRefGoogle Scholar
  12. [Gr 2]
    A. Grothendieck, Standard conjectures on algebraic cycles, in: Algebraic geometry, Bombay 1968, Oxford, 1969Google Scholar
  13. [Ha]
    R. Hartshorne, Equivalence relations on algebraic cycles and subvarieties of small codimension, in: Algebraic geometry (Arcata 1974), Proceedings of Symposia in Pure Mathematics 29 (1975), 129–164MathSciNetGoogle Scholar
  14. [Ja 1]
    U. Jannsen, Deligne cohomology, Hodge D-conjecture and motives, in: Beilinson’s conjectures on special values of L-functions (M. Rapoport, N. Schappacher and P. Schneider, eds.), Academic Press, 1988Google Scholar
  15. [Ja 2]
    U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207–245MathSciNetMATHCrossRefGoogle Scholar
  16. [Ja 3]
    U. Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), 447–452MathSciNetMATHCrossRefGoogle Scholar
  17. [Ja 4]
    U. Jannsen, Mixed motivic sheaves and filtrations on Chow groups, in: Motives, Proceedings of Symposia in Pure Mathematics 55 (1994) Part 1Google Scholar
  18. [Ki]
    S. Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), 285–302MathSciNetMATHCrossRefGoogle Scholar
  19. [K–M]
    N. Katz and W. Messing, Some consequences of the Riemann hypothesisd for varieties over finite fields, Inv. Math. 23 (1974), 73–77MathSciNetMATHGoogle Scholar
  20. [Kl]
    S. Kleiman, The standard conjectures, in: Motives, Proceed-ings of Symposia in Pure Mathematics 55 (1994) Part 1Google Scholar
  21. [K–S]
    T. Katsura and T. Shioda, On Fermat varieties, Tôhoku Math. J. 31 (1979), 97–115MathSciNetMATHCrossRefGoogle Scholar
  22. [La 1]
    R. Laterveer, Algebraic varieties with small Chow groups, to appear in J. Math. Kyoto Univ. Google Scholar
  23. [La 2]
    R. Laterveer, Codimension 2 algebraic cycles, in preparationGoogle Scholar
  24. [Le]
    J. Lewis, A generalization of Mumford’s theorem II, Illinois Journal of Mathematics 39 (1995), 288–304MathSciNetMATHGoogle Scholar
  25. [Mu]
    J.P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety, I and II, Indag. Math. 4 (1993), 177–201MathSciNetMATHCrossRefGoogle Scholar
  26. [No]
    M. Nori, Algebraic cycles and Hodge theoretic connectivity,Inv. Math. 111 (1993), 349–373MathSciNetMATHCrossRefGoogle Scholar
  27. [Pe]
    C. Peters, Lawson homology for varieties with small Chow groups, preprint 1998Google Scholar
  28. [Ro]
    J. Roberts, Chow’s moving lemma, in: Algebraic geometry Oslo 1970 (F. Oort, ed.), Wolters—Noordhoff Publ. Groningen 1972Google Scholar
  29. [Ro 1]
    A. Roitman, Rational equivalence of zero-cycles, Math. USSR-Sb. 18 (1974), 571–588MATHCrossRefGoogle Scholar
  30. [Ro 2]
    A. Roitman, The torsion in the group of zero-cycles modulo rational equivalence, Ann. of Math. 111 (1980), 553–569MathSciNetCrossRefGoogle Scholar
  31. [Sa]
    S. Saito, Motives and filtrations on Chow groups, Invent. Math. 125 (1996), 149–196MathSciNetMATHCrossRefGoogle Scholar
  32. [Sc]
    C. Schoen, On Hodge structures and non-representability of Chow groups, Comp. Math. 88 (1993), 285–316MathSciNetMATHGoogle Scholar
  33. [Schol]
    A.J. Scholl, Classical motives, in: Motives, Proceedings of Symposia in Pure Mathematics 55 (1994) Part 1Google Scholar
  34. [Sh]
    T. Shioda, The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979), 175–184MathSciNetMATHCrossRefGoogle Scholar
  35. [We]
    A. Weil, Sur les critères d’équivalence en géométrie algé-briqueGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Robert Laterveer
    • 1
  1. 1.CNRS, IrmaStrasbourg CedexFrance

Personalised recommendations