Advertisement

Variations of Hodge—de Rham Structure and Elliptic Modular Units

  • Jörg Wildeshaus
Part of the Progress in Mathematics book series (PM, volume 171)

Abstract

In this paper, we give a conceptual interpretation of generalized elliptic units in terms of variations of Hodge-de Rham structure, and of (elliptic) polylogarithms.

Keywords

Modulus Space Elliptic Curve Base Change Elliptic Curf Multivalued Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BD]
    A.A. Beilinson, P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulateurs, in Motives, U. Jannsen, S.L. Kleiman, J.-P. Serre, eds., Proc. of Symp. in Pure Math. 55, Part II, AMS, 1994, pp. 123–190.Google Scholar
  2. [CKS]
    E. Cattani, A. Kaplan, W. Schmid, Degeneration of Hodge structures, Ann. of Math. 123 (1986), 457–535.MathSciNetMATHCrossRefGoogle Scholar
  3. [D]
    P. Deligne, Equations Différentielles à Points Singuliers Réguliers, LNM 163, Springer-Verlag, 1970.Google Scholar
  4. [DM]
    P. Deligne, J.S. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura Varieties, P. Deligne, J.S. Milne, A. Ogus, K.-y. Shih, eds., LNM 900, Springer-Verlag, 1982, 101–228.CrossRefGoogle Scholar
  5. [GL]
    A. Goncharov, A. Levin, Zagier’s conjecture on L(E, 2), Invent. Math. 132 (1998), 393–432.MathSciNetMATHCrossRefGoogle Scholar
  6. [H]
    M. Harris, Hodge—de Rham structures and periods of automorphic forms, in Motives, U. Jannsen, S.L. Kleiman, J.-P. Serre, eds., Proc. of Symp. in Pure Math. 55, Part II, AMS, 1994, 573–624.Google Scholar
  7. [Ka]
    M. Kashiwara, A study of variation of mixed Hodge structure, Publ. RIMS Kyoto Univ. 22 (1986), 991–1024.MathSciNetMATHCrossRefGoogle Scholar
  8. [KL]
    [ D.S. Kubert, S. Lang, Modular units, Grundlehren Math. Wiss. 244, Springer-Verlag, 1981.Google Scholar
  9. [Ku]
    D.S. Kubert, Product formulae on elliptic curves, Invent. Math. 117 (1994), 227–273.MathSciNetMATHCrossRefGoogle Scholar
  10. [L]
    S. Lang, Elliptic Functions, Addison—Wesley, Reading, MA, 1973.MATHGoogle Scholar
  11. [R]
    K. Rolshausen, Eléments explicites dans К 2 d’une courbe elliptique, thèse, Prépubl ications de l’Institut de Recherche Mathématiques avancée 1996/05.Google Scholar
  12. [dSh]
    E. de Shalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication, Perspectives in Math. 3, Academic Press, 1987.MATHGoogle Scholar
  13. [Si]
    J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer-Verlag, 1994.MATHCrossRefGoogle Scholar
  14. [W1]
    J. Wildeshaus, Realizations of Polylogarithms, LNM 1650, Springer-Verlag, 1997.Google Scholar
  15. [W1IV]
    J. Wildeshaus, Polylogarithmic extensions on mixed Shimura varieties. Part II: The classical polylogarithm, in [W1, 199–248].Google Scholar
  16. [W1V]
    J. Wildeshaus, Polylogarithmic extensions on mixed Shimura varieties. Part III: The elliptic polylogarithm, in [W1, 249–340].Google Scholar
  17. [W2]
    J. Wildeshaus, On an elliptic analogue of Zagier’s conjecture, Duke Math. J. 87 (1997), 355–407.MathSciNetMATHCrossRefGoogle Scholar
  18. [W3]
    J. Wildeshaus, On the generalized Eisenstein symbol, in Motives, Polylogarithms, and Nonabelian Hodge Theory; Proceedings of the conference held June 4–6 1988 at the University of California at Irvine, to appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jörg Wildeshaus
    • 1
  1. 1.Institut GaliléeUniversité ParisVilletaneuseFrance

Personalised recommendations