Skip to main content

Bayesian Robustness and Bayesian Nonparametrics

  • Chapter
Robust Bayesian Analysis

Part of the book series: Lecture Notes in Statistics ((LNS,volume 152))

Abstract

Bayesian robustness studies the sensitivity of Bayesian answers to user inputs, especially to the specification of the prior. Nonparametric Bayesian models, on the other hand, refrain from specifying a specific prior functional form P, but instead assume a second-level hyperprior on P with support on a suitable space of probability measures. Nonparametric Bayes thus appears to have the same goals as robust Bayes, and nonparametric Bayes models are typically presumed to be robust. We investigate this presumed robustness and prior flexibility of nonparametric Bayes models. In this context, we focus specifically on Dirichlet process mixture models. We argue that robustness should be an issue of concern in Dirichlet process mixture models and show how robustness measures can actually be evaluated in these models in a computationally feasible way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, J.H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniak, C.E. (1974). Mixture of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2, 1152–1174.

    Article  MathSciNet  MATH  Google Scholar 

  • Basu, S. (1996). Local sensitivity, functional derivatives and nonlinear posterior quantities. Statistics and Decisions, 14, 405–418.

    MathSciNet  MATH  Google Scholar 

  • Basu, S. (1999). Posterior sensitivity to the sampling distribution and the prior: more than one observation. Annals of the Institute of Statistical Mathematics, 51, 499–513.

    Article  MathSciNet  MATH  Google Scholar 

  • Basu, S. (2000). Robustness of Dirichlet process mixture models. (Manuscript under preparation).

    Google Scholar 

  • Basu, S. and Mukhopadhyay, S. (1998). Binary response regression with normal scale mixture links. In Generalized Linear Models: A Bayesian Perspective (D.K. Dey et al. eds.). To appear.

    Google Scholar 

  • Blackwell, D. and Macqueen, J.B. (1973). Ferguson distributions via Polya urn schemes. Annals of Statistics 1, 353–355.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. (1984). The robust Bayesian viewpoint (with discussion). In Robustness of Bayesian Analysis. (J.B. Kadane ed.). Amsterdam: North-Holland.

    Google Scholar 

  • Berger, J.O. (1990). Robust Bayesian analysis: sensitivity to the prior. Journal of Statistical Planning and Inference, 25, 303–328.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. (1994). An overview of robust Bayesian analysis. TEST, 2, 5–58.

    Article  Google Scholar 

  • Berger, J.O., Ríos Insua, D. and Ruggeri, F. (2000). Bayesian robustness. In Robust Bayesian Analysis (D. Ríos Insua and F. Ruggeri eds.). New York: Springer-Verlag.

    Google Scholar 

  • Bush, C.A. and Maceachern, S.N. (1996). A semiparametric Bayesian model for randomised block designs. Biometrika, 83, 275–285.

    Article  MATH  Google Scholar 

  • Carota, C. (1996). Local robustness of Bayes factors for nonparametric alternatives. In Bayesian Robustness (J.O. Berger, B. Betrò, E. Moreno, L.R. Pericchi, F. Ruggeri, G. Salinetti and L. Wasserman, eds.), 283–291. IMS Lecture Notes — Monograph Series, Volume 29. Hayward, CA: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  • Clarke, B. and Gustafson, P. (1998). On the overall sensitivity of the posterior distribution to its inputs. Journal of Statistical Planning and Inference, 71, 137–150.

    Article  MathSciNet  MATH  Google Scholar 

  • Dalal, S.R., Fowlkes, E.B. and Hoadley, B. (1989). Risk analysis of Space Shuttle:pre-Challenger prediction of failure. Journal of American Statistical Association, 84, 945–957.

    Google Scholar 

  • Dennison, D.G.T., Mallick, B.T. and Smith, A.F.M. (1998). Automatic Bayesian curve fitting. Journal of the Royal Statistical Society, Ser. B, 80, 331–350.

    Google Scholar 

  • Doksum, K. (1974) Tail-free and neutral random probabilities and their posterior distributions. Annals of Probability, 2, 183–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Doss, H. (1994). Bayesian nonparametric estimation for incomplete data via substitution sampling. Annals of Statistics, 22, 1763–1786.

    Article  MathSciNet  MATH  Google Scholar 

  • Doss, H. and Narasimhan, B. (1998). Dynamic display of changing posterior in Bayesian survival analysis. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha, eds.), 63–87. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Escobar, M.D. (1994). Estimating normal means with a Dirichlet process prior. Journal of American Statistical Association, 89, 268–277.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M.D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of American Statistical Association, 90, 577–588.

    Article  MathSciNet  MATH  Google Scholar 

  • Escobar, M.D. and West, M. (1998). Computing nonparametric hierarchical models. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha, eds.), 1–22. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T. (1983). Bayesian density estimation by mixtures of normal distributions. In Recent Advances in Statistics: Papers in Honor of Herman Chernoff (Rizvi et al., eds.), 287–302. New York: Academic Press.

    Google Scholar 

  • Good, I.J. (1959). Could a machine make probability judgments? Computers and Automation, 8, 14–16 and 24-26.

    MathSciNet  Google Scholar 

  • Good, I.J. (1961). Discussion of C.A.B. Smith: Consistency in statistical inference and decision. Journal of the Royal Statistical Society, S er. B, 23, 28–29.

    MathSciNet  Google Scholar 

  • Gopalan, R. and Berry, D.A. (1998). Bayesian multiple comparisons using Dirichlet process priors. Journal of American Statistical Association, 93, 1130–1139.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson, P. (2000). Local robustness of posterior quantities. In Robust Bayesian Analysis (D. Ríos Insua and F. Ruggeri, eds.). New York: Springer-Verlag.

    Google Scholar 

  • Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York: John Wiley.

    Google Scholar 

  • Huber, P.J. (1981). Robust Statistics. New York: John Wiley.

    Book  Google Scholar 

  • Kuo, L. (1986). Computations of mixtures of Dirichlet processes. SIAM Journal of Scientific and Statistical Computation, 7, 60–71.

    Article  Google Scholar 

  • Lavine, M. (1991). Problems in extrapolation illustrated with Space Shuttle o-ring data. Journal of American Statistical Association, 86, 919–922.

    Article  Google Scholar 

  • L Avine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. Annals of Statistics, 20, 1203–1221.

    Article  MathSciNet  Google Scholar 

  • Maceachern, S.N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Communications in Statistics: Simulation and Computation, 23, 727–741.

    Article  MathSciNet  MATH  Google Scholar 

  • Maceachern, S.N. and Müller, P. (1998). Estimating mixture of Dirichlet process models. Journal of Computational and Graphical Statistics, 7, 223–238.

    Google Scholar 

  • Maceachern, S.N. and Müller, P. (2000). Sensitivity analysis by MCMC in encompassing Dirichlet process mixture models. In Robust Bayesian Analysis (D. Ríos Insua and F. Ruggeri eds.). New York: Springer-Verlag.

    Google Scholar 

  • Moreno, E. (2000). Global Bayesian robustness for some classes of prior distributions. In Robust Bayesian Analysis (D. Ríos Insua and F. Ruggeri eds.). New York: Springer-Verlag.

    Google Scholar 

  • Müller, P., Erkanli, A. and West, M. (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika, 83, 67–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Neal, R.M. (1998). Markov chain sampling methods for Dirichlet process mixture models. Technical Report, University of Toronto.

    Google Scholar 

  • Ríos Insua D. and Müller, P. (1998). Feedforward neural networks for nonparametric regression. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha eds.), 181–191. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Ruggeri, F. (1994). Nonparametric Bayesian robustness. Technical Report, 94.8, CNR-IAMI.

    Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639–650.

    MathSciNet  MATH  Google Scholar 

  • Shively, T.S., Kohn, R. and Wood, S. (1999). Variable selection and function estimation in additive nonparametric regression using a data-based prior (with discussions), Journal of American Statistical Association, 94, 777–806.

    Article  MathSciNet  MATH  Google Scholar 

  • Shyamalkumar, N.D. (2000). Likelihood robustness. In Robust Bayesian Analysis (D. Ríos Insua and F. Ruggeri eds.). New York: Springer-Verlag.

    Google Scholar 

  • Sinha, D. and Dey, D.K. (1997). Semiparametric Bayesian analysis of survival data. Journal of American Statistical Association, 92, 1195–1212.

    Article  MathSciNet  MATH  Google Scholar 

  • Verdinelli, I. and Wasserman, L. (1998). Bayesian goodness-of-fit testing using infinite-dimensional exponential families. Annals of Statistics, 26, 1215–1241.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidakovic, B. (1998). Wavelet-based nonparametric Bayes methods. In Practical Nonparametric and Semiparametric Bayesian Statistics (D. Dey, P. Müller and D. Sinha eds.), 133–150. New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Wasserman, L. (1992). Recent methodological advances in robust Bayesian inference. In Bayesian Statistics 4 (J.M. Bernardo et al., eds.), 483–502. Oxford: Oxford University Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Basu, S. (2000). Bayesian Robustness and Bayesian Nonparametrics. In: Insua, D.R., Ruggeri, F. (eds) Robust Bayesian Analysis. Lecture Notes in Statistics, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1306-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1306-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98866-5

  • Online ISBN: 978-1-4612-1306-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics