Neuronal Networks That Control the Septal Pacemaker System: Synaptic Interconnections Between the Septal Complex, Hippocampus, Supramammillary Area, and Median Raphe

  • Csaba Leranth
  • Robert P. Vertes


This chapter outlines the synaptic interconnections of neurochemically characterized neuronal cell groups located in the medial septum diagonal band of Broca (MSDB), supramammillary area (SUM), and median raphe nucleus (MR) that are involved directly and indirectly via the MSDB GABAergic and cholinergic pacemaker neurons, in the subcortical regulation of hippocampal theta rhythm activity. Furthermore, data will be presented regarding the way in which the hippocampal formation might regulate the activity of spontaneously bursting SUM neurons. Although the chapter contains descriptions of each experiment, the methodological details will only be given for those procedures that are not generally used.


GABAergic Neuron Septal Lesion Theta Rhythm Medial Septum Lateral Septal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, A., and Kohler, C. 1984. A study of the reciprocal connections between the septum and entorhinal area using anterograde and retrograde axonal transport methods in the rat brain. J. Comp. Neurol. 225:327–343.CrossRefPubMedGoogle Scholar
  2. Alreja, M. 1996. Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse. 22:15–27.CrossRefPubMedGoogle Scholar
  3. Assaf, S.Y., and Miller, J.J. 1978. The role of the raphe serotonin system in the control of septal unit activity and hippocampal desynchronization. Neuroscience. 3:539–550.CrossRefPubMedGoogle Scholar
  4. Azmitia, E.C., and Segal, M. 1978. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 179:641–668.CrossRefPubMedGoogle Scholar
  5. Bach, M.E., Hawkins, R.D., Osman, M., Kandel, E.R., and Mayford, M. 1995. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. 81:905–915.CrossRefPubMedGoogle Scholar
  6. Barnes, J.M., Costall, B., Coughlan, X, Domeney, A.M., Gerrard, P.A., Kelly, M.A., et al. 1990. The effects of ondansetron, a 5-HT3 receptor antagonist, on cognition in rodents and primates. Pharmacol. Biochem. Behav. 35:955–962.CrossRefPubMedGoogle Scholar
  7. Beatty, W.W., and Carbone, C.P. 1980. Septal lesions, intramaze cues and spatial behavior in rats. Physiol. Behav. 24:675–678.CrossRefPubMedGoogle Scholar
  8. Berger-Sweeney, X, Heckers, S., Mesulam, M-M., Wiley, R.G., Lappi, D.A., and Sharma, M. 1994. Differential effects on spatial navigation of immunotoxin-induced cholinergic lesions of the medial septal area and nucleus basalis magno-cellularis. J. Neurosci. 14:4507–4519.PubMedGoogle Scholar
  9. Bland, B.H. 1986. The physiology and pharmacology of hippocampal formation theta rhythm. Progr. Brain Res. 26:1–54.Google Scholar
  10. Borhegyi, Z., and Leranth, C. 1997. Distinct substance P-and calretinin-containing projections from the supramammillary area to the hippocampus in rats; a species difference between rats and monkeys. Exp. Brain Res. 115:369–374.CrossRefPubMedGoogle Scholar
  11. Borhegyi, Z., Maglóczky, Z., Acsady, L., and Freund, T.F. 1998. The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience. 82:1053–1065.CrossRefPubMedGoogle Scholar
  12. Bramham, C.R., and Srebro, B. 1989. Synaptic plasticity in the hippocampus is modulated by behavioral state. Brain Res. 493:74–86.CrossRefPubMedGoogle Scholar
  13. Buhot, M-C. 1997. Serotonin receptors in cognitive behaviors. Curr. Opin. Neuro biol. 7:243–254.CrossRefGoogle Scholar
  14. Buzsaki, G., and Gage, F. 1989. Absence of long-term potentiation in the subcorti-cally deafferented dentate gyrus. Brain Res. 484:94–101.CrossRefPubMedGoogle Scholar
  15. Buzsaki, G, Leung, L.W., and Van der wolf, C.H. 1983. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287:139–171.PubMedGoogle Scholar
  16. Buzsaki, G., Haas, H.L., and Anderson, E.G. 1987. Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res. 435:331–333.CrossRefPubMedGoogle Scholar
  17. Carey, G. J., Costall, B., Domeney, A.M., Gerrard, P.A., Jones, D.N.C, Naylor, R.X, et al. 1992. Ondansetron and arecoline prevent scopolamine-induced cognitive deficits in the marmoset. Pharmacol. Biochem. Behav. 42:75–83.CrossRefPubMedGoogle Scholar
  18. Carnes, K.M., Fuller, TA., and Price, J.L. 1990. Sources of presumptive gluta-matergicJaspartatergic afferents to the magnocellular basal forebrain in the rat. J. Comp. Neurol. 302:824–852.CrossRefPubMedGoogle Scholar
  19. Corradetti, R., Ballerini, L., Pugliese, A.M., and Pepeu, G. 1992. Serotonin blocks the long-term potentiation induced by primed burst stimulation in the CA1 region of rat hippocampal slices. Neuroscience. 46:511–518.CrossRefPubMedGoogle Scholar
  20. Costall, B., and Naylor, R. J. 1994. 5-HT3 receptor antagonists in the treatment of cognitive disorders. In 5-Hydroxytryptamine-3 Receptor Antagonists., eds. F. D. King, B.X Jones, and G. J. Sanger, pp. 203–219. Boca Raton: CRC Press.Google Scholar
  21. Cullinam, W.E., and Zaborszky, L. 1991. Organization of ascending hypothalamic projections to the rostral forebrain with special reference to the innervation of cholinergic projection neurons. J. Comp. Neurol. 306:631–667.CrossRefGoogle Scholar
  22. Delier, T., Leranth, C., and Frotscher, M. 1994. Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus: a combined PHA-L and fluoro-gold immunocytochemical study. Neurosci. Lett. 168:119–122.CrossRefGoogle Scholar
  23. Diamond, D.M., Dunwiddie, TV., and Rose, G.M. 1988. Characteristics of hippocampal primed burst potentiation in vitro. and in the awake rat. J. Neurosci. 8:4079–4088.PubMedGoogle Scholar
  24. Dutar, P., Bassant, M-H., Senut, M-C, and Lamour, Y. 1995. The septohippocampal pathway: structure and function of a central cholinergic system. Physiol Rev. 75:393–427.PubMedGoogle Scholar
  25. Eccles J.C. 1964. The Physiology of Synapses. Heidelberg: Springer.CrossRefGoogle Scholar
  26. Eichenbaum, H., Otto, T., and Cohen, N.J. 1992. The hippocampus; what does it do? Behav. Neural. Biol. 57:2–36.CrossRefPubMedGoogle Scholar
  27. Fontana, D. J., Daniels, S.E., Hendersen, C., Eglen, R.M., and Wong, E.H. 1995. Ondansetron improves cognitive performance in the Morris water maze spatial navigation task. Psychopharmacology. 120:409–417.CrossRefPubMedGoogle Scholar
  28. Freund, T.F., and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170–173.CrossRefPubMedGoogle Scholar
  29. Freund, T.F., and Buzsaki, G. 1996. Interneurons of the hippocampus. Hippocampus. 6:347–470.CrossRefPubMedGoogle Scholar
  30. Freund, T.F., Gulyas, A.I., Acsadi, L., Gorcs, T., and Toth, K. 1990. Serotonergic control of the hippocampus via local inhibitory interneurons. Proc. Natl. Acad. Sci. USA. 87:8501–8505.CrossRefPubMedGoogle Scholar
  31. Frotscher, M., and Leranth, C. 1985. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: a combined light and electron microscopic study. J. Comp. Neurol. 239:237–246.CrossRefPubMedGoogle Scholar
  32. Frotscher, M., and Leranth, C. 1986. The cholinergic innervation of the rat fascia dentata: identification of target structures on granule cells by combining choline acetyltransferase immunocytochemistry and Golgi impregnation. J. Comp. Neurol. 43:58–70.CrossRefGoogle Scholar
  33. Gage, F.H., Bjorklund, A., Stenevi, U., Dunnett, S.B., and Kelley P.A.T. 1984. Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science. 225:533–536.CrossRefPubMedGoogle Scholar
  34. Gray, J.A, and McNaughton, N. 1983. Comparison between the behavioral effects of septal and hippocampal lesions: a review. Neurosci. Biobehav. Rev. 7:119–188.CrossRefPubMedGoogle Scholar
  35. Greenstein, Y. J., Pavlides, C, and Winson, J. 1988. Long-term potentiation is preferentially induced at theta periodicity. Brain Res. 438:331–334.CrossRefPubMedGoogle Scholar
  36. Gulyas, A.I., Gores, T. J., and Freund, T.F. 1990. Innervation of different peptide-containing neurons in the hippocampus by GABAergic septal afferents. Neuroscience. 37:31–44.CrossRefPubMedGoogle Scholar
  37. Gulyas, A.I., Seress, L., Toth, K., Acsadi, L., Antal, M., and Freund, T.F. 1991. Septal GABAergic interneurons innervate inhibitory interneurons in the hippocampus of macaque monkey. Neuroscience. 41:381–390.CrossRefPubMedGoogle Scholar
  38. Gulyas, A.I., Miettinen, R., Jakobowitz, D.M., and Freund, T.F. 1992. Calretinin is present in nonpyramidal cells of the rat hippocampus. I. A new type of neuron specifically associated with the mossy fiber system. Neuroscience. 48:1–27.CrossRefPubMedGoogle Scholar
  39. Halasy, K., Miettinen, R., Szabat, E., and Freund, T.F. 1992. GABAergic interneurons are the major postsynaptic targets of median raphe afferents in the rat dentate gyrus. Eur. J. Neurosci. 4:144–153.CrossRefPubMedGoogle Scholar
  40. Hepler, DJ., Olton, D.S., Wenk, G.L., and Coyle, J.T. 1985. Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J. Neurosci. 5:866–873.PubMedGoogle Scholar
  41. Hodges, H., Sowinski, P., Sinden, J.D., Netto, C.A., and Fletcher, A. 1995. The selective 5-HT3 antagonist, WAY-100289, enhances spatial memory in rats with ibote-nate lesions of the forebrain cholinergic projection system. Psychopharmacology. 117:318–332.CrossRefPubMedGoogle Scholar
  42. Hodges, H., Sowinski, P., Turner, J. J., and Fletcher, A. 1996. Comparison of the effects of the 5-HT3 receptor antagonists WAY-100579 and ondansetron on spatial learning in the water maze in rats with excitotoxic lesions of the forebrain cholinergic projection system. Psychopharmacology. 125:146–161.CrossRefPubMedGoogle Scholar
  43. Holderith, N., Varoqueaux, F., Borhegyi, Z., and Leranth, C. 1998. Dual (excitatory and inhibitory) calretinin innervation of AMPA receptor-containing neurons in the lateral septum. Exp. Brain Res. 119:65–72.CrossRefPubMedGoogle Scholar
  44. Honda, T., and Semba, K. 1993. Serotonergic synaptic input to GABAergic septo-hippocampal neurons in the rat: A pre-embedding triple-label electron microscopic study. Soc. Neurosci. Abstr. 19:1442.Google Scholar
  45. Huerta, P.T., and Lisman, J.E. 1993. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature. 364:723–725.CrossRefPubMedGoogle Scholar
  46. Jakab, R.L., and Leranth, C. 1993. Presence of somatostatin or neurotensin in lateral septal dopaminergic axon terminals of distinct origins. Convergence on the somatospiny neurons. Exp. Brain Res. 92:420–430.CrossRefPubMedGoogle Scholar
  47. Jakab, R.L., and Leranth, C. 1995. Septum. In The Rat Nervous System., ed. G. Paxinos, pp. 405–442. New York: Academic Press, Inc.Google Scholar
  48. Ji, Z.Q., Aas, J.E., Laake, J., and Ottersen, O.P. 1991. An electron microscopic immunogold analysis of glutamate and glutamine in terminals of rat spinocere-bellar fibers. J. Comp. Neurol. 307:296–310.CrossRefPubMedGoogle Scholar
  49. Kesner, R.P. 1988. Reevaluation of the contribution of the basal forebrain cholinergic system to memory. Neurobiol. Aging. 9:609–616.CrossRefPubMedGoogle Scholar
  50. Kesner, R.P, Crutcher, K., and Measom, M.O. 1986. Medial septal and nucleus basalis magnocellularis lesions produce order memory deficits in rats which mimic symptomatology of Alzheimer’s disease. Neurobiol Aging. 7:287–295.CrossRefPubMedGoogle Scholar
  51. Kinney, G.G., Kocsis, B., and Vertes, R.P. 1994. Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane anesthetized rat. Brain Res. 654:96–104.CrossRefPubMedGoogle Scholar
  52. Kinney, G.G., Kocsis, B., and Vertes, R.P. 1995. Injections of muscimol into the median raphe nucleus produce hippocampal theta rhythm in the rat. Psychopharmacology. 120:244–248.CrossRefPubMedGoogle Scholar
  53. Kinney, G.G., Kocsis, B., and Vertes, R.P. 1996. Medial septal unit firing characteristics following injections of 8-OH-DPAT into the median raphe nucleus. Brain Res. 708:116–122.CrossRefPubMedGoogle Scholar
  54. Kiss, X, and Szeiffert, G. 1995. Topographic analysis of connections between the rat septal diagonal band complex and the supramammillary area. Fourth IBRO World Congress of Neuroscience, Rapid communications of Oxford Ltd. p. 389.Google Scholar
  55. Kiss, J., Buzsaki, G, Morrow, J.S., Glantz, S.B., and Leranth, C. 1996. Entorhinal cortical innervation of parvalbumin-containing neurons (basket and chandelier cells) in the rat Ammon’s horn. Hippocampus. 6:239–246.CrossRefPubMedGoogle Scholar
  56. Kiss, J., Maglóczky, Z., Somogyi, X, and Freund, T.F. 1997. Distribution of calretinin-containing neurons relative to other neurochemically identified cell types in the medial septum of the rat. Neuroscience. 78:399–410.CrossRefPubMedGoogle Scholar
  57. Kocsis, B., and Vertes, R.P. 1992. Dorsal raphe neurons: synchronous discharge with the theta rhythm of the hippocampus in the freely behaving rat. J. Neurophysiol. 68:1463–1467.PubMedGoogle Scholar
  58. Kosaka, T., Kosaka, K., Tateishi, K., Hamaoka, Y., Yanaihara, N., Wu, J-Y, et al. 1985. GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J. Comp. Neurol. 239:420–430.CrossRefPubMedGoogle Scholar
  59. Krnjevic, K., and Ropert, N. 1982. Electrophysiological and pharmacological characteristics of facilitation of hippocampal population spikes by stimulation of the medial septum. Neuroscience. 7:2165–2183.CrossRefPubMedGoogle Scholar
  60. Larson, J., and Lynch, G. 1986. Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events. Science. 232:985–988.CrossRefPubMedGoogle Scholar
  61. Larson, J., Wong, D., and Lynch, G. 1986. Patterned stimulation at theta frequency is optimal for the induction of long-term potentiation. Brain Res. 368:347–350.CrossRefPubMedGoogle Scholar
  62. Larson, X, Ambros-Ingerson, J., and Lynch, G. 1991. Sites and mechanisms for expression of long-term potentiation. In Long-Term Potentiation., ed. M. Baudry, and XL. Davis, pp. 121–139. Cambridge, MA: MIT Press.Google Scholar
  63. Leranth, C., and Kiss, X 1996. A population of supramammillary area calretinin neurons terminating on medial septal area cholinergic and lateral septal area calbindin-containing cells are aspartateJglutamatergic. J. Neurosci. 16:7699–7710.PubMedGoogle Scholar
  64. Leranth, C., and Nitsch, R. 1994. Hypothalamic substance P-containing afferents can filter the signal flow in the monkey hippocampal formation: morphological evidence for stimulation and feed-forward inhibition of different populations of granule cells and indirect inhibition of CA3 pyramidal neurons. J. Neurosci. 14:4079–4094.PubMedGoogle Scholar
  65. Leranth, C, Delier, T., and Buzsaki, G. 1992. Intraseptal connections redefined: lack of lateral septum to medial septum path. Brain Res. 583:1–11.CrossRefPubMedGoogle Scholar
  66. Leranth, C., and Frotscher, M. 1989. The organization of the septal region in the rat brain: cholinergic-GABAergic interconnections and the termination of hip-pocampo-septal fibers. J. Comp. Neurol. 289:304–314CrossRefPubMedGoogle Scholar
  67. Leung, L.S., Shen, B., and Kaibara, T 1992. Long-term potentiation induced by patterned stimulation of the commissural pathway to hippocampal CA1 region in freely moving rats. Neuroscience. 48:63–74.CrossRefPubMedGoogle Scholar
  68. Liu, W., and Alreja, M. 1997. Atypical antipsychotics block the excitatory effects of serotonin in septohippocampal neurons in the rat. Neuroscience. 79:369–382.CrossRefPubMedGoogle Scholar
  69. Low, W.C., Lewis, P.R., Bunch, S.T., Dunnett, S.B., Thomas, S.R., Iversen, S.D., et al. 1982. Function recovery following neural transplantation of embryonic septal nuclei in adult rats with septohippocampal lesions. Nature. 300:260–262.CrossRefPubMedGoogle Scholar
  70. Luiten, P.G.M., Kuipers, F, and Schuitmaker, H. 1982. Organization of diencephalic and brainstem projections to the lateral septum in the rat. Neurosci. Lett. 30:211–216.CrossRefPubMedGoogle Scholar
  71. Macadar, A.W., Chalupa, L.M., and Lindsley, D.B. 1974. Differentiation of brain stem loci which affect hippocampal and neocortical electrical activity. Exp. Neurol. 43:499–514.CrossRefPubMedGoogle Scholar
  72. Maglöczky, Z., Acsady, L., and Freund, T.F. 1994. Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus. 4:322–334.CrossRefPubMedGoogle Scholar
  73. Marrosu, F., Fornal, CA., Metzler, C.W., and Jacobs, B.L. 1996. 5-HT1A agonists induce hippocampal theta activity in freely moving rats: role of presynaptic 5-HT1A receptors. Brain Res. 739:192–200.CrossRefPubMedGoogle Scholar
  74. Maru, E., Takahashi, L.K., and Iwahara, S. 1979. Effects of median raphe nucleus lesions on hippocampal EEG in the freely moving rat. Brain Res. 163:223–234.CrossRefPubMedGoogle Scholar
  75. Maxwell, D. J., Christie, W.M., Short, A.D., Storm-Mathisen, J., and Ottersen, O.P. 1990. Central boutons of glomeruli in the spinal cord of the cat are enriched with L-glutamate-like immunoreactivity. Neuroscience. 36:83–104.CrossRefPubMedGoogle Scholar
  76. Mayford, M., Wang, J., Kandel, E.R., and O’Dell, T.X 1995. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell. 81:891–904.CrossRefPubMedGoogle Scholar
  77. Mayford, M., Bach, M.E., Huang, Y-Y., Wang, L., Hawkins, R.D., and Kandel, E.R. 1996. Control of memory formation through the regulated expression of a CaMKII transgene. Science. 274:1678–1683.CrossRefPubMedGoogle Scholar
  78. M’Harzi, M., and Jarrard, L.E. 1992. Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. Behav. Brain Res. 49:159–165.CrossRefPubMedGoogle Scholar
  79. Milner, T.A., and Veznedaroglu, E. 1993. Serotonin-containing terminals synapse on septohippocampal neurons in the rat. J. Neurosci. Res. 36:260–271.CrossRefPubMedGoogle Scholar
  80. Mizumori, S. J.Y., Perez, G.M., Alvarado, M.C., Barnes, C.A., and McNaughton, B.L. 1990. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res. 528:12–20.CrossRefPubMedGoogle Scholar
  81. Miyamoto, M., Kato, J., Narumi, S., and Nagaoka, A. 1987. Characterisitics of memory impairment following lesioning of the basal forebrain and medial septal nucleus in rats. Brain Res. 419:19–31.CrossRefPubMedGoogle Scholar
  82. Moore, R.Y., and Halaris, A.E. 1975. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J. Comp. Neurol. 164:171–184.CrossRefPubMedGoogle Scholar
  83. Nguyen, P.V., and Kandel, E.R. 1997. Brief theta-burst stimulation induces a transscription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn. Memory. 4:230–243.CrossRefGoogle Scholar
  84. Nitsch, R., and Leranth, C. 1993. Calretinin immunoreactivity in the monkey hippocampal formation. II: Intrinsic GABAergic and hypothalamic non-GABAergic systems. An experimental tracing and coexistence study. Neuroscience. 55:797–812.CrossRefPubMedGoogle Scholar
  85. Nitsch, R., and Leranth, C. 1996. GABAergic neurons in the rat dentate gyrus are innervated by subcortical calretinin-containing afferents. J. Comp. Neurol. 364:425–438.CrossRefPubMedGoogle Scholar
  86. O’Keefe, J. 1993. Hippocampus, theta, and spatial memory. Curr. Opin. Neurobiol. 3:917–924.CrossRefPubMedGoogle Scholar
  87. Pavlides, C., Greenstein, Y. J., Grudman, M., and Winson, J. 1988. Long-term poten-tiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res. 439:383–387.CrossRefPubMedGoogle Scholar
  88. Poucet, B., Herrmann, T., and Buhot, M.C. 1991. Effects of short-lasting inactiva-tions of the ventral hippocampus and medial septum on long-term and short-term acquisition of spatial information in rats. Behav. Brain Res. 44:53–65.CrossRefPubMedGoogle Scholar
  89. Raisman, G. 1969. A comparation of the mode of termination of the hippocampal and hypothalamic afferents to the septal nuclei as revealed by electron microscopy of degeneration. Exp. Brain Res. 7:317–343.CrossRefPubMedGoogle Scholar
  90. Risold, P.Y., and Swanson, L.W. 1997a. Connections of the lateral septal complex. Brain Res. Rev. 24:115–195.CrossRefPubMedGoogle Scholar
  91. Risold, P.Y., and Swanson, L.W. 1997b. Chemoarchitecture of the rat lateral septal nucleus. Brain Res. Rev. 24:91–113.CrossRefPubMedGoogle Scholar
  92. Rose, G.M., and Dunwiddie, T.V. 1986. Induction of hippocampal long-term poten-tiation using physiologically patterned stimulation. Neurosci. Lett. 69:244–248.CrossRefPubMedGoogle Scholar
  93. Rotenberg, A., Mayford, M., Hawkins, R.D., Kandel, E.R., and Muller, R.U. 1996. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell. 87:1351–1361.CrossRefPubMedGoogle Scholar
  94. Saper, C.B. 1985. Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J. Comp. Neurol. 237:21–46.CrossRefPubMedGoogle Scholar
  95. Seress, L., Nitsch, R., and Leranth, C. 1993. Calretinin immunoreactivity in the monkey hippocampal formation. I: Light and electron microscopic characteristics and colocalization with other calcium-binding proteins. Neuroscience. 55:775–796.CrossRefPubMedGoogle Scholar
  96. Stackman, R.W., and Walsh, T. J. 1995. Distinct profile of working memory errors following acute or chronic disruption of the cholinergic septohippocampal pathway. Neurobiol. Learn. Memory. 64:226–236.CrossRefGoogle Scholar
  97. Staiger, J.F., and Nurnberger, F. 1991. The efferent connections of the lateral septal nucleus in the guinea pig: intrinsic connectivity of the septum and projections to other telencephalic areas. Cell Tissue Res. 264:415–426.CrossRefPubMedGoogle Scholar
  98. Staubli, U., and Lynch, G. 1987. Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation. Brain Res. 435:227–234.CrossRefPubMedGoogle Scholar
  99. Staubli, U, and Otaky, N. 1994. Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses. Brain Res. 643:10–16.CrossRefPubMedGoogle Scholar
  100. Staubli, U., and Xu, F. 1995. Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J. Neurosci. 15:2445–2452.PubMedGoogle Scholar
  101. Storm-Mathisen, J., Leknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.M.S., and Ottersen, O.P. 1983. First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature. 301:517–520.CrossRefPubMedGoogle Scholar
  102. Streit, P. 1980. Selective retrograde labeling indicating the transmitter of neuronal pathways. J. Comp. Neurol. 191:429–463.CrossRefPubMedGoogle Scholar
  103. Swain, N.E., and McNaughton, N. 1996. Divergent projections from the pedunculo-pontine tegmental area co-operate in gating theta rhythm. Soc. Neurosci. Abstr. 22:431Google Scholar
  104. Swanson, L.W., and Cowan, W.M. 1979. The connections of the septal region of the rat. J. Comp. Neurol. 186:621–656.CrossRefPubMedGoogle Scholar
  105. Szeidemann, Z., Jakab, R.L., Shanabrough, M., and Leranth, C. 1995a. Extrinsic and intrinsic substance P innervation of the rat lateral septal area calbindin cells. Neuroscience. 69:1205–1221.CrossRefPubMedGoogle Scholar
  106. Szeidemann, Z., Shanabrough, M., and Leranth, C. 1995b. Hypothalamic Leu-enkephalin immunoreactive fibers terminate on calbindin containing somatospiny cells in the lateral septal area of the rat. J. Comp. Neurol. 358: 573–583.CrossRefPubMedGoogle Scholar
  107. Toth, K., and Freund, TF. 1992. Calbindin D28-containing nonpyramidal cells in the rat hippocampus: their immunoreactivity for GABA and projection to the medial septum. Neuroscience. 49:793–805.CrossRefPubMedGoogle Scholar
  108. Varoqueaux, F., and Leranth, C. 1997. Hypothalamo-septal enkephalinergic fibers terminate on AMPA receptor-containing neurons in the rat lateral septal area. Synapse. 7:359–373.Google Scholar
  109. Vertes, R.P. 1981. An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J. Neurophysiol. 46:1140–1159.PubMedGoogle Scholar
  110. Vertes, R.P. 1988. Brainstem afferents to the basal forebrain in the rat. Neuroscience. 24:907–935.CrossRefPubMedGoogle Scholar
  111. Vertes, R.P. 1992. PHA-L analysis of projections from the supramammillary nucleus in the rat. J. Comp. Neurol. 326:595–622.CrossRefPubMedGoogle Scholar
  112. Vertes, R.P., and Kocsis, B. 1997. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 81:893–926.CrossRefPubMedGoogle Scholar
  113. Vertes, R.P, Kinney, G.G., Kocsis, B., and Fortin, WJ. 1994. Pharmacological suppression of the median raphe nucleus with serotonin 1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience. 60:441–451.CrossRefPubMedGoogle Scholar
  114. Vertes, R.P., and Martin, G.F. 1988. An autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J. Comp. Neurol. 275:511–541.CrossRefPubMedGoogle Scholar
  115. Winson, J. 1978. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science. 201:160–163.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Csaba Leranth
  • Robert P. Vertes

There are no affiliations available

Personalised recommendations