The Poisson Equation

  • Antonios Gonis
  • William H. Butler
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


Up to this point in our discussion we have considered the application of multiple scattering theory in obtaining the solution of the one-particle Schrödinger equation in solid materials. We have seen that given a potential, MST allows the exact treatment of the associated Schrödinger equation even in the general case of cell potentials that fill all space.


Poisson Equation Schrodinger Equation Multipole Moment Multipole Expansion Multiple Scattering Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Hohenberg and W. Kohn, Phys. Rev. 136B, 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    W. Kohn and L. J. Sham, Phys. Rev. 140A, 1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Robert C. Parr and Weitao Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).Google Scholar
  4. [4]
    R. M. Dreizier and E. K. U. Gross, Density Functional Theory (Springer-Verlag, New York, 1990).CrossRefMATHGoogle Scholar
  5. [5]
    J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, New York, 1975).MATHGoogle Scholar
  6. [6]
    E. Madelung, Physik. 19, 524 1918)MATHGoogle Scholar
  7. [7]
    P. P. Ewald, Ann. Phys. 64, 253(1921)Google Scholar
  8. [8]
    P. D. De Cicco, Phys. Rev. 153, 931 (1967).ADSCrossRefGoogle Scholar
  9. [9]
    G. S. Painter, Phys. Rev. B7, 3520 (1973).ADSGoogle Scholar
  10. [10]
    N. Elyasher and D. D. Koelling, Phys. Rev. B13, 5362 (1976).ADSGoogle Scholar
  11. [11]
    B. R. A. Nijboer and F. W. de Wette, Physica 23, 309 (1957).MathSciNetADSCrossRefMATHGoogle Scholar
  12. [12]
    B. R. A. Nijboer and F. W. de Wette, Physica 24, 422 (1958).ADSCrossRefMATHGoogle Scholar
  13. [13]
    F. W. de Wette and B. R. A. Nijboer, Physica 24, 1105 (1958).MathSciNetADSCrossRefMATHGoogle Scholar
  14. [14]
    F. G. Fumi and M. P. Tosi, Phys. Rev. 117, 1466 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    W. E. Rudge, Phys. Rev. 181, 1020 (1969).ADSCrossRefGoogle Scholar
  16. [16]
    J. L. Birman, J. Phys. Chem. Solids 6, 65 (1958).ADSCrossRefGoogle Scholar
  17. [17]
    M. P. Tosi, Solid State Phys. 16, 1 (1964).CrossRefGoogle Scholar
  18. [18]
    T. L. Loucks, Augmented Plane Wave Method (Benjamin, New York, 1967).Google Scholar
  19. [19]
    E. J. Baerends, D. E. Ellis, and P. Ross, Chem. Phys. 2, 41 (1973).CrossRefGoogle Scholar
  20. [20]
    B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 4993 (1979).ADSCrossRefGoogle Scholar
  21. [21]
    J. W. Mintmire, Int. J. Quantum Chem. Symp. 13, 163 (1979).Google Scholar
  22. [22]
    J. Harris and G. S. Painter, Phys. Rev. B 22, 2614 (1980).ADSCrossRefGoogle Scholar
  23. [23]
    G. S. Painter, Phys. Rev. B23, 1624 (1981).ADSGoogle Scholar
  24. [24]
    M. Weinert, J. Math. Phys. 22, 2433 (1981).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    J. van W. Morgan, J. Phys. C10, 1181 (1977).ADSGoogle Scholar
  26. [26]
    H. L. Skriver, The LMTO Method (Springer-Verlag, Berlin, 1984).CrossRefGoogle Scholar
  27. [27]
    X. -G. Zhang and A. Gonis, Phys. Rev. Lett. 61, 1161 (1989).ADSCrossRefGoogle Scholar
  28. [28]
    X. -G. Zhang, A. Gonis, and James M. MacLaren, Phys. Rev. B40, 3694 (1989).ADSGoogle Scholar
  29. [29]
    X. -G. Zhang, A. Gonis, and D. M. Nicholson, Phys. Rev. B40, 947 (1989).ADSGoogle Scholar
  30. [30]
    R. K. Nesbet, Phys. Rev. B41, 4948 (1990).ADSGoogle Scholar
  31. [31]
    W. H. Butler and R. K. Nesbet, Phys. Rev. B42, 1518 (1990).ADSGoogle Scholar
  32. [32]
    J. F. Janak, Phys. Rev. B9, 3985 (1974).ADSGoogle Scholar
  33. [33]
    V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals (Pergamon Press, New York, 1978).Google Scholar
  34. [34]
    J. Korringa, Physica 13, 392 (1947).MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).ADSCrossRefMATHGoogle Scholar
  36. [36]
    Mathematica 1.2 (Wolfram Research, Inc., Champaign, IL, 1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Antonios Gonis
    • 1
  • William H. Butler
    • 2
  1. 1.Chemistry and Materials Science GroupLawrence Livermore LaboratoryLivermoreUSA
  2. 2.Metal and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations