Thermodynamics of Photovoltaics

  • A. De Vos

Abstract

A solar cell is a thermodynamic engine working between two heat reservoirs, one at high temperature T 1 (= the temperature of the Sun = 5762 K) and one at low temperature T 2 (= the temperature of the Earth = 288 K). Its electric current consists of two parts: the light current, strongly dependent on T 1, and the dark current, strongly dependent both on T 2 and on material constants and technology parameters.

Keywords

Entropy Recombination GaAs Auger GaSb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Landsberg: An introduction to the theory of photovoltaic cells, Solid-State Electron. 18 1043–1052, (1975).ADSCrossRefGoogle Scholar
  2. [2]
    A. De Vos: Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 1992.Google Scholar
  3. [3]
    A. De Vos: The endoreversible theory of solar energy conversion: A tutorial, Solar Energy Mater. Solar Cells 31, 75–93, (1993).CrossRefGoogle Scholar
  4. [4]
    I. Novikov: Effektivyj koefficient poleznovo deystvia atomnoy energeticeskoj ustanovki, Atomnaya Energiya 3, 409–412, (1957), in: English translation: The efficiency of atomic power stations (a review), J. Nuclear Energy II 7, 125-128, (1958).Google Scholar
  5. [5]
    F. Curzon and B. Ahlborn: Efficiency of a Carnot engine at maximum power output, Amer. J. Phys. 43, 22–24, (1975).ADSCrossRefGoogle Scholar
  6. [6]
    H. Müser: Behandlung von Elektronenprozessen in Halbleiter-Randschichten, Z. Phys. 148, 380–390, (1957).ADSCrossRefGoogle Scholar
  7. [7]
    A. De Vos: Endoreversible thermodynamics and chemical reactions, J. Phys. Chem. 95, 4534–4540, (1991).CrossRefGoogle Scholar
  8. [8]
    A. De Vos and H. Pauwels: On the thermodynamic limit of photovoltaic energy conversion, Appl. Phys. 25, 119–125, (1981).ADSCrossRefGoogle Scholar
  9. [9]
    P. Landsberg: Photons at non-zero chemical potential, J. Phys. C: Solid State Phys. 14, L 1025–1027, (1981).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    P. Würfel: The chemical potential of radiation, J. Phys. C: Solid State Phys. 15, 3967–3985, (1982).ADSCrossRefGoogle Scholar
  11. [11]
    A. De Vos and J. Landries: Endoreversible thermodynamics of the hybrid photothermal-photovoltaic converter, 11th European Photovoltaic Solar Energy Conference, Montreux, 12-16 October 1992, pp. 363–366.Google Scholar
  12. [12]
    W. Spirkl and H. Ries: Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication, Phys. Review B 52, 11, 319–411, 325, (1995).Google Scholar
  13. [13]
    P. Landsberg, H. Nussbaumer, and G. Willeke: Band-band impact ionization and solar cell efficiency, J. Appl. Phys. 74, 1451–1452, (1993).ADSCrossRefGoogle Scholar
  14. [14]
    J. Werner, R. Brendel, and H. Queisser: New upper efficiency limits for semiconductor solar cells, 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 5-9 December 1994, pp. 1742–1745.Google Scholar
  15. [15]
    A. De Vos and B. Desoete: On the ideal performance of solar cells with larger-than-unity quantum efficiency, Sol. Energy Mater. Solar Cells 51, 413–424, (1998).CrossRefGoogle Scholar
  16. [16]
    E. Jackson: Areas for improvement of the semiconductor solar energy converter, Conference on the Use of Solar Energy, Tucson, 1-2 November 1955, pp. 122–126.Google Scholar
  17. [17]
    A. De Vos: Detailed balance limit of the efficiency of tandem solar cells, J. f Phys. D: Appl. Phys. 13, 839–846, (1980).ADSCrossRefGoogle Scholar
  18. [18]
    A. De Vos and H. Pauwels: Comment on a thermodynamical paradox presented by Würfel, J. Phys. C: Solid State Phys. 16, 6897–6909, (1983).ADSCrossRefGoogle Scholar
  19. [19]
    C. Grosjean and A. De Vos: On the upper limit of the energy conversion efficiency in tandem solar cells, J. Phys. D: Appl. Phys. 14, 883–894, (1981).ADSCrossRefGoogle Scholar
  20. [20]
    A. De Vos, C. Grosjean and H. Pauwels: On the formula for the upper limit of photovoltaic solar energy conversion efficiency, J. Phys. D: Appl. Phys. 15, 2003–2015, (1982).ADSCrossRefGoogle Scholar
  21. [21]
    M. Green, K. Emery, K. Bücher, D. King and S. Igari: Solar cell efficiency tables (version 12), Progr. in Photovoltaics 6, 265–270, (1998).CrossRefGoogle Scholar
  22. [22]
    A. De Vos: Thermodynamics of photochemical solar energy conversion, Solar Energy Mater. Solar Cells 38, 11–22, (1995) and 40, 1996 erratum.CrossRefGoogle Scholar
  23. [23]
    A. De Vos and G. Flater: The maximum efficiency of the conversion of solar energy into wind energy, Amer. J. Phys. 59, 751–754, (1991).ADSCrossRefGoogle Scholar
  24. [24]
    A. De Vos and P. van der Wel: The efficiency of the conversion of solar energy into wind energy by means of Hadley cells, Theret. Appl. Climatol. 46, 193–202, (1993).ADSCrossRefGoogle Scholar
  25. [25]
    A. De Vos: Endoreversible thermoeconomics, Energy Conversion and Management 36, 1–5, (1995).ADSCrossRefGoogle Scholar
  26. [26]
    A. De Vos: Endoreversible economics, Energy Conversion and Management 38, 311–317, (1997).CrossRefGoogle Scholar
  27. [27]
    A. De Vos: Endoreversible thermodynamics versus economics, Energy Conversion and Management 40, 1009–1019, (1999).CrossRefGoogle Scholar
  28. [28]
    A. De Vos: Reversible and endoreversible computing, Internat. J. Theret. Phys. 34, 2251–2266, (1995).MATHCrossRefGoogle Scholar
  29. [29]
    A. De Vos: Introduction to r-MOS systems, 4th Workshop on Phys. and Computation, Boston, 22-24 November 1996, pp. 92–96.Google Scholar
  30. [30]
    A. De Vos: Towards reversible digital computers, European Conference on Circuit Theory and Design, Budapest, 1-3 September 1997, pp. 923–931.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. De Vos

There are no affiliations available

Personalised recommendations