Advertisement

Thermodynamics of Photovoltaics

  • A. De Vos

Abstract

A solar cell is a thermodynamic engine working between two heat reservoirs, one at high temperature T 1 (= the temperature of the Sun = 5762 K) and one at low temperature T 2 (= the temperature of the Earth = 288 K). Its electric current consists of two parts: the light current, strongly dependent on T 1, and the dark current, strongly dependent both on T 2 and on material constants and technology parameters.

Keywords

Solar Cell Thermal Engine Solar Energy Conversion Heat Reservoir Light Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Landsberg: An introduction to the theory of photovoltaic cells, Solid-State Electron. 18 1043–1052, (1975).ADSCrossRefGoogle Scholar
  2. [2]
    A. De Vos: Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 1992.Google Scholar
  3. [3]
    A. De Vos: The endoreversible theory of solar energy conversion: A tutorial, Solar Energy Mater. Solar Cells 31, 75–93, (1993).CrossRefGoogle Scholar
  4. [4]
    I. Novikov: Effektivyj koefficient poleznovo deystvia atomnoy energeticeskoj ustanovki, Atomnaya Energiya 3, 409–412, (1957), in: English translation: The efficiency of atomic power stations (a review), J. Nuclear Energy II 7, 125-128, (1958).Google Scholar
  5. [5]
    F. Curzon and B. Ahlborn: Efficiency of a Carnot engine at maximum power output, Amer. J. Phys. 43, 22–24, (1975).ADSCrossRefGoogle Scholar
  6. [6]
    H. Müser: Behandlung von Elektronenprozessen in Halbleiter-Randschichten, Z. Phys. 148, 380–390, (1957).ADSCrossRefGoogle Scholar
  7. [7]
    A. De Vos: Endoreversible thermodynamics and chemical reactions, J. Phys. Chem. 95, 4534–4540, (1991).CrossRefGoogle Scholar
  8. [8]
    A. De Vos and H. Pauwels: On the thermodynamic limit of photovoltaic energy conversion, Appl. Phys. 25, 119–125, (1981).ADSCrossRefGoogle Scholar
  9. [9]
    P. Landsberg: Photons at non-zero chemical potential, J. Phys. C: Solid State Phys. 14, L 1025–1027, (1981).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    P. Würfel: The chemical potential of radiation, J. Phys. C: Solid State Phys. 15, 3967–3985, (1982).ADSCrossRefGoogle Scholar
  11. [11]
    A. De Vos and J. Landries: Endoreversible thermodynamics of the hybrid photothermal-photovoltaic converter, 11th European Photovoltaic Solar Energy Conference, Montreux, 12-16 October 1992, pp. 363–366.Google Scholar
  12. [12]
    W. Spirkl and H. Ries: Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication, Phys. Review B 52, 11, 319–411, 325, (1995).Google Scholar
  13. [13]
    P. Landsberg, H. Nussbaumer, and G. Willeke: Band-band impact ionization and solar cell efficiency, J. Appl. Phys. 74, 1451–1452, (1993).ADSCrossRefGoogle Scholar
  14. [14]
    J. Werner, R. Brendel, and H. Queisser: New upper efficiency limits for semiconductor solar cells, 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 5-9 December 1994, pp. 1742–1745.Google Scholar
  15. [15]
    A. De Vos and B. Desoete: On the ideal performance of solar cells with larger-than-unity quantum efficiency, Sol. Energy Mater. Solar Cells 51, 413–424, (1998).CrossRefGoogle Scholar
  16. [16]
    E. Jackson: Areas for improvement of the semiconductor solar energy converter, Conference on the Use of Solar Energy, Tucson, 1-2 November 1955, pp. 122–126.Google Scholar
  17. [17]
    A. De Vos: Detailed balance limit of the efficiency of tandem solar cells, J. f Phys. D: Appl. Phys. 13, 839–846, (1980).ADSCrossRefGoogle Scholar
  18. [18]
    A. De Vos and H. Pauwels: Comment on a thermodynamical paradox presented by Würfel, J. Phys. C: Solid State Phys. 16, 6897–6909, (1983).ADSCrossRefGoogle Scholar
  19. [19]
    C. Grosjean and A. De Vos: On the upper limit of the energy conversion efficiency in tandem solar cells, J. Phys. D: Appl. Phys. 14, 883–894, (1981).ADSCrossRefGoogle Scholar
  20. [20]
    A. De Vos, C. Grosjean and H. Pauwels: On the formula for the upper limit of photovoltaic solar energy conversion efficiency, J. Phys. D: Appl. Phys. 15, 2003–2015, (1982).ADSCrossRefGoogle Scholar
  21. [21]
    M. Green, K. Emery, K. Bücher, D. King and S. Igari: Solar cell efficiency tables (version 12), Progr. in Photovoltaics 6, 265–270, (1998).CrossRefGoogle Scholar
  22. [22]
    A. De Vos: Thermodynamics of photochemical solar energy conversion, Solar Energy Mater. Solar Cells 38, 11–22, (1995) and 40, 1996 erratum.CrossRefGoogle Scholar
  23. [23]
    A. De Vos and G. Flater: The maximum efficiency of the conversion of solar energy into wind energy, Amer. J. Phys. 59, 751–754, (1991).ADSCrossRefGoogle Scholar
  24. [24]
    A. De Vos and P. van der Wel: The efficiency of the conversion of solar energy into wind energy by means of Hadley cells, Theret. Appl. Climatol. 46, 193–202, (1993).ADSCrossRefGoogle Scholar
  25. [25]
    A. De Vos: Endoreversible thermoeconomics, Energy Conversion and Management 36, 1–5, (1995).ADSCrossRefGoogle Scholar
  26. [26]
    A. De Vos: Endoreversible economics, Energy Conversion and Management 38, 311–317, (1997).CrossRefGoogle Scholar
  27. [27]
    A. De Vos: Endoreversible thermodynamics versus economics, Energy Conversion and Management 40, 1009–1019, (1999).CrossRefGoogle Scholar
  28. [28]
    A. De Vos: Reversible and endoreversible computing, Internat. J. Theret. Phys. 34, 2251–2266, (1995).MATHCrossRefGoogle Scholar
  29. [29]
    A. De Vos: Introduction to r-MOS systems, 4th Workshop on Phys. and Computation, Boston, 22-24 November 1996, pp. 92–96.Google Scholar
  30. [30]
    A. De Vos: Towards reversible digital computers, European Conference on Circuit Theory and Design, Budapest, 1-3 September 1997, pp. 923–931.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • A. De Vos

There are no affiliations available

Personalised recommendations