Skip to main content

Behavior of Pesticides in Water—Sediment Systems

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 187))

Abstract

Many kinds of pesticides and their metabolites have been detected in various water bodies and bottom sediments even under normal agricultural practices (USEPA 1997; Gilliom 2001; Martin et al. 2003). Pesticides can potentially enter surface water by several routes and be partitioned to bottom sediments even if they are appropriately used for crop protection in accordance with good agricultural practices. Spray drift, surface runoff, and field drainage are relevant routes of exposure, and contamination via groundwater discharge may occur. The direct application of pesticides to water occures either for rice protection in a paddy field or for control of undesirable emergent vegetation of weeds and algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aajoud A, Ravanel P, Tissut M (2003) Fipronil metabolism and dissipstion in a simplified aquatic ecosystem. J Agric Food Chem 51:1347–1352.

    Article  CAS  PubMed  Google Scholar 

  • Adriaanse PI (2004) Water-sediment studies for step 3 FOCUS surface water: guidance of FOCUS degradation kinetics. In: Proceedings of the 3rd European Modelling Workshop, Catania, Italy. http://www.pfmodels.org/emw3.html.

    Google Scholar 

  • Adriaanse PI, Vink JPM, Brouwer WWM, Leistra M, Tas JW, Linders JBHJ, Pol JW (2002) Estimating transformation rates of pesticides, to be used in the TOXSWA model, from water-sediment studies. Alterra rapport 023. Alterra Green World Research, Wageningen, The Netherlands.

    Google Scholar 

  • Aelion CM, Mathur PP (2001) Atrazine biodegradation to deisopropylatrazine and deethylatrazine in coastal sediments of different land uses. Environ Toxicol Chem 20:2411–2419.

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri NP, Jain HK (1985) Persistence of thiophanate-methyl residues in soil, water, sediment and plant. Pesticides 19:30a-30d.

    CAS  Google Scholar 

  • Agnihotri NP, Jain HK (1987) Persistence of flucythrinate and fluvalinate in soil, water and sediment. Pesticides 21:36–38.

    CAS  Google Scholar 

  • Agnihotri NP, Jain HK, Gajbhiye VT (1986) Persistence of some synthetic pyrethroid insecticides in soil, water and sediment. Part 1. J Entomol Res 10:147–151.

    CAS  Google Scholar 

  • Agnihotri NP, Jain HK, Gajbhiye VT, Srivastava KP (1989) Persistence of some synthetic pyrethroids and organophosphorus insecticides in soil, water and sediment. Part II. J Entomol Res 13:131–136.

    CAS  Google Scholar 

  • Agriculture Canada (1987) Environmental chemistry and fate guidelines for registration of pesticides in Canada. T-1–255.

    Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138.

    Article  CAS  PubMed  Google Scholar 

  • Allan IJ, House WA, Parker A, Carter JE (2004) Transport and distribution of lindane and simazine in a riverine environment: measurements in bed sediments and modeling. Pestic Manag Sci 60:417–433.

    Article  CAS  Google Scholar 

  • Allen R, Arnold DJ (1990) The comparative fate of (14C)-amitraz in different sediment/water types. In: Proceedings, BCPC Conferences: Pest and Diseases. British Crop Protection Council, Brighton, U.K., pp 1023–1028.

    Google Scholar 

  • Anderson C, Brumhard B, Ditgens K, Reiner H (1999) Metabolism of fenhexamid (KBR 2738) in plants, animals and the environment. Pflanzenschutz-Nachrichten Bayer 52:227–251.

    Google Scholar 

  • APVMA (2001a) Public release summary on evaluation of the new active fenhexamid in the product Teldor 500 SC Fungicide. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • APVMA (2001b) Public release summary on evaluation of the new active thiamethoxam in the product Cruiser 350FS Insecticide Seed Treatment. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • APVMA (2002a) Public release summary on evaluation of the new active butafenacil in the product Logran B-Powder Herbicide & Touchdown B-Powder Herbicide. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • APVMA (2002b) Public release summary on evaluation of the new active fludioxinil in the product Maxim 100FS Fungicide Seed Treatment. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • APVMA (2002c) Public release summary on evaluation of the new active trifloxysulfuron sodium in the product Envoke Herbicide. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • APVMA (2003) Public release summary on evaluation of the new active pyraclostrobin in the product Cabrio Fungicide. Australian Pesticides and Veterinary Medicines Authority, Canberra, Australia.

    Google Scholar 

  • Armbrust KL (1999) Photochemical processes influencing pesticide degradation in rice paddies. J Pestic Sci 24:69–73.

    Article  CAS  Google Scholar 

  • Arnold DJ, Leake CR, Somerville L (1986) Clofentezine: degradation and mobility in soil/sediments. In: Proceedings, BCPC Conference: Pests and Diseases. British Crop Protection Council, Brighton, U.K., pp 851–855.

    Google Scholar 

  • Attaway HH III, Camper ND, Paynter MJB (1982a) Anaerobic microbial degradation of diuron by pond sediment. Pestic Biochem Physiol 17:96–101.

    Article  CAS  Google Scholar 

  • Attaway HH III, Paynter MJB, Camper ND (1982b) Degradation of selected phenylurea herbicides by anaerobic pond sediment. J Environ Sci Health B17:683–699.

    Article  Google Scholar 

  • Babczinski P (2002) Environmental behavior of spinodiclofen (BAJ 2740; Envidor®). Pflanzenschutz-Nachrichten Bayer 55:197–209.

    CAS  Google Scholar 

  • Bailey GW, Thruston AD Jr, Pope JD Jr, Cochrane DR (1970) The degradation kinetics of an ester of silvex and the persistence of silvex in water and sediment. Weed Sci 18:413–419.

    Article  CAS  Google Scholar 

  • BBA (1990) Degradability and fate of plant protectants in the water/sediment system. In: Guidelines for Examination of Plant Protectants in the Registration Process, Part IV 5–1. Federal Biological Institute for Agriculture and Forestry, Federal Republic of Germany, Braunschweig.

    Google Scholar 

  • Beigel C, Beulke S, Boesten J, Aden K, Dust M, Dyson J, Fomsgaard I, Jones R, Karlsson S, van der Linden T, Soria OM, Richter O, Soulas G (2004) FOCUS work group on degradation kinetics. 2. Special considerations for metabolites in soil. In: Proceedings of the 3rd European Modelling Workshop, Catania, Italy. http://www.pfmodels.org/emw3.html.

    Google Scholar 

  • Bennett (1990) Evaluation of the fate of pesticides in water and sediment. In: Hutson DH, Roberts TR (eds) Progress in Pesticide Biochemistry and Toxicology, vol 7. Wiley, New York, pp 149–173.

    Google Scholar 

  • Berger BM, Wolfe NL (1996) Hydrolysis and biodegradation of sulfonylurea herbicides in aqueous buffers and anaerobic water-sediment systems: assessing fate pathways using molecular descriptors. Environ Toxicol Chem 15:1500–1507.

    CAS  Google Scholar 

  • Beulke S, Brown CD (2001) Evaluation of methods to derive pesticide degradation parameters for regulatory modeling. Biol Fertil Soils 33:558–564.

    Article  CAS  Google Scholar 

  • Beulke S, Boesten J, Aden K, Beigel C, Dust M, Dyson J, Fomsgaard I, Jones R, Karlsson S, van der Linden T, Soria OM, Richter O, Soulas G (2004) FOCUS work group on degradation kinetics. 1. Overview, general data issues and parent kinetics. In: Proceedings of the 3rd European Modelling Workshop, Catania, Italy. http://www.pfmodels.org/emw3.html.

    Google Scholar 

  • Bewick DW, Hill JR, Hamer M, Bharti H (1984) PP321: behaviour in terrestrial and aquatic ecosystems. In: Proceedings, BCPC Conference: Pests and Diseases, British Crop Protection Council, Brighton, U.K., pp 343–347.

    Google Scholar 

  • Boesten JJTI, Jones RL, Aden K, Beigel CY, Beulke S, Dust M, Dyson JS, Fomsgaard IS, Karisson S, van der Linden AMA, Richter O, Magrans JO, Soulas G (2003) Calculation of degradation kinetics for use in regulatory exposure assessment. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticides in Air, Plant, Soil and Water System. Proceedings, 12th Symposium on Pesticide Chemistry, Piacenza, Italy, pp 467–471.

    Google Scholar 

  • Bohn HL (1971) Redox potentials. Soil Sci 112:39–45.

    Article  CAS  Google Scholar 

  • Bollag JM, Liu SY (1990) Biological transformation processes of pesticides. In: Cheng HH (ed) Pesticides in the Soil Environment: Processes, Impacts, and Modeling. SSSA Book Series 2. Soil Science Society of America, Madison, WI, pp 169–211.

    Google Scholar 

  • Bollag JM, McGahen LL, Minard RD, Liu SY (1986) Bioconcentration of alachlor in an anaerobic stream sediment. Chemosphere 15:153–162.

    Article  CAS  Google Scholar 

  • Bondarenko S, Gan J (2004) Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environ Toxicol Chem 23:1809–1814.

    Article  CAS  PubMed  Google Scholar 

  • Borchers H, Stupp HP (2004) Environmental fate of fluoxastrobin (HEC5725). Pflanzenschutz-Nachrichten Bayer 57:337–354.

    CAS  Google Scholar 

  • Boschin G, D’Agostina A, Arnoldi A, Marotta E, Zanaradini E, Negri M, Valle A, Sorlini C (2003) Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J Environ Sci Health B38:737–746.

    Article  CAS  Google Scholar 

  • Boxall A, Brown C, Barrett K (2001) Higher tier laboratory aquatic toxicity testing. Cranfield Centre for EcoChemistry research report No. JF 4317E for DETR, Silsoe, U.K.

    Google Scholar 

  • Brassard P (1997) Measurement of Eh and pH in aquatic sediments. In: Mudroch A, Azcue JM, Mudroch P (eds) Manual of Physico-Chemical Analysis of Aquatic Sediments. Lewis, Boca Raton, pp 47–67.

    Google Scholar 

  • Brock TCM, Crum SJH, van Wijngaarden R, Budde BJ, Tijink J, Zuppelli A, Leeuwangh P (1992) Fate and effects of the insecticide Dursban® 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems: I. Fate and primary effects of the active ingredient chlorpyrifos. Arch Environ Contam Toxicol 23:69–84.

    Article  CAS  PubMed  Google Scholar 

  • Brock TCM, Bos AR, Crum SJH, Gylstra R (1995) The model ecosystem approach in ecotoxicology as illustrated with a study on the fate and effects of an insecticide in stagnant freshwater microcosms. In: Hock B, Niessner Jr R (eds) Immunochemical Detection of Pesticides and Their Metabolites in the Water Cycle. VCH, Weinheim, pp 167–185.

    Google Scholar 

  • Bromilow RH, Evans AA, Nichllos PH (2003) The influence of lipophilicity and formulation on the distribution of pesticides in laboratory-scale sediment/water systems. Pest Manag Sci 59:238–244.

    Article  CAS  PubMed  Google Scholar 

  • Capel PD, Eisenreich SJ (1989) Sorption of organochlorines by lake sediment pore-water colloids. In: Suffet IH, MacCarthy PM (eds) Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants. Advances in Chemistry Series 219. American Chemical Society, Washington, DC, pp 185–207.

    Chapter  Google Scholar 

  • Caquet T, Lagadic L, Sheffield SR (2000) Mesocosms in ecotoxicology (1). Outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38.

    CAS  PubMed  Google Scholar 

  • Carlton RR, Allen R (1994) The use of a compartment model for evaluating the fate of pesticides in sediment/water system. In: Proceedings, BCPC Conference: Pests and Diseases. British Crop Protection Council, Brighton, U.K., pp 1349–1354.

    Google Scholar 

  • CDPR (2001) Environmental fate of fipronil. In: Fate Reviews. California Department of Pesticide Regulation, Environmental Monitoring Branch, Sacramento, CA.

    Google Scholar 

  • CDPR (2004) Environmental fate of spinosad. In: Fate Reviews. California Department of Pesticide Regulation, Environmental Monitoring Branch, Sacramento, CA.

    Google Scholar 

  • Chesters G, Simsiman GV, Levy J,Alhajjar BJ, Fathulla RN, Harkin JM (1989) Environmental fate of alachlor and metolachlor. Rev Environ Contam Toxicol 110:1–74.

    Article  CAS  PubMed  Google Scholar 

  • Chi J, Huang GL (2002) Modelling air-water exchange process of pentachlorophenol in the aquatic environment. Water Qual Res J Can 37:445–458.

    Article  CAS  Google Scholar 

  • Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831–832.

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CB, Bormett GA, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L, Balcer JL (2002) Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems. J Agric Food Chem 50:3244–3256.

    Article  CAS  PubMed  Google Scholar 

  • Cotham WE Jr, Bidleman TF (1989) Degradation of malathion, endosulfan and fenvalerate in seawater and seawater/sediment microcosms. J Agric Food Chem 37:824–828.

    Article  CAS  Google Scholar 

  • Cranwell PA (1976) Organic geochemistry of lake sediments. In: Nriagu JO (ed) Environmental Biogeochemistry, vol 1. Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles. ANN Arbor Science, Ann Arbor, MI, pp 75–88.

    Google Scholar 

  • Crawford JJ, Sims GK, Simmons FW, Wax LM, Freedman DL (2002) Dissipation of the herbicide [14C]dimethanamid under anaerobic conditions in flooded soil microcosms. J Agric Food Chem 50:1483–1491.

    Article  CAS  PubMed  Google Scholar 

  • Cripe CR, Pritchard PH (1990) Aquatic test systems for studying the fate of xenobiotic compounds. Aquatic Toxicology Risk Assessment, vol 13. ASTM Special Technical Publication 1096. American Society for Testing and Materials, Washington, DC, pp 29–47.

    Google Scholar 

  • Cripe CR, O’Neill EJ, Woods ME, Gilliam WT, Pritchard PH (1989) Fate of fenthion in salt-marsh environments: I. Factors affecting biotic and abiotic degradation rates in water and sediment. Environ Toxicol Chem 8:747–758.

    Article  CAS  Google Scholar 

  • Crosby DG (1994) Photochemical aspects of bioavailability. In: Hamelink JL (ed) Bioavailability Proceedings Pellston Workshop, 13th, Session 5. Dynamic Environmental Factors. Lewis, Boca Raton, pp 109–118.

    Google Scholar 

  • Crossland NO (1982) Aquatic toxicology of cypermethrin. II. Fate and biological effects in pond experiments. Aquatic Toxicol 2:205–222.

    Article  CAS  Google Scholar 

  • Crossland NO, Bennett D (1984) Fate and biological effects of methyl parathion in outdoor ponds and laboratory aquaria. Ecotoxicol Environ Saf 8:471–181.

    Article  CAS  PubMed  Google Scholar 

  • Crossland NO, Bennett D, Wolff CJM, Swannell RPJ (1986) Evaluation of models used to assess the fate of chemicals in aquatic systems. Pestic Sci 17:297–304.

    Article  CAS  Google Scholar 

  • Crum SJH, Brock TCM (1994) Fate of chlorpyrifos in indoor microcosms and outdoor experimental ditches. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis, Boca Raton, pp 315–322.

    Google Scholar 

  • Crum SJH, Aslderink GH, Brock TCM (1998) Fate of the herbicide linuron in outdoor experimental ditches. Chemosphere 36:2175–2190.

    Article  CAS  Google Scholar 

  • Daniels WM, House WA, Zhmud BV, Rae JE, Parker A (1998) Diffusive movement of simazine and lindane in river-bed sediments. Pestic Sci 54:212–222.

    Article  CAS  Google Scholar 

  • Daniels WM, House WA, Rae JE, Parlor A (2000) The distribution of micro-organic contaminants in river bed-sediment cores. Sci Total Environ 253:81–92.

    Article  CAS  PubMed  Google Scholar 

  • Day KE, Kaushik NK, Solomon KR (1987) Impact of fenvalerate on enclosed freshwater planktonic communities and on in situ rates of filtration of zooplankton. Can J Fish Aquat Sci 44:1714–1728.

    Article  CAS  Google Scholar 

  • Deane G, Chroneer Z, Lick W (1999) Diffusion and sorption of hexachlorobenzene in sediments and saturated soils. J Environ Eng 125:689–696.

    Article  CAS  Google Scholar 

  • DeVitre RR, Sulzberger B, Buffle J (1994) Transformation of iron at redox boundaries. In: Buffle J, DeVitre RR (eds) Chemical and Biological Regulation of Aquatic Systems. Lewis, Boca Raton, pp 91–137.

    Google Scholar 

  • Dierksmeier G, Martinez K, Ricardo C, Garcia M, Orta L, Moreno P, Suárez B (2002) Behavior of pesticides in a water/sediment system under laboratory and field conditions. Environ Technol 23:1303–1307.

    Article  CAS  PubMed  Google Scholar 

  • Dieter CD, Duffy WG, Flake LD (1995) Environmental fate of phorate and its metabolites in northern prairie wetlands. J Freshwat Ecol 10:103–109.

    Article  CAS  Google Scholar 

  • Ding JY, Wu SC (1993) Laboratory studies of the effects of dissolved organic material on the adsorption of organochlorine pesticides by sediments and transport in rivers. Water Sci Technol 28:199–208.

    Article  CAS  Google Scholar 

  • Droppo IG, Ongley ED (1992) The state of suspended sediment in the freshwater fluvial environment: a method of analysis. Water Res 26:65–72.

    Article  CAS  Google Scholar 

  • Droppo IG, Leppard GG, Flannigan DT, Liss SN (1997) The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water Air Soil Pollut 99:4353.

    Google Scholar 

  • Dunnivant FM, Schwarzenbach RP, Macalady DL (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol 26:2133–2141.

    Article  CAS  Google Scholar 

  • Dutch Guideline (1995) Data on the degradation in water/sediment systems. In: The Registration Form and Guidelines for the Submission of Applications for Registration of Pesticides. Application form A, Part G.2.1.2.

    Google Scholar 

  • Dyson JS, Chapman PF, Snell RJ, Tarr JB (1999) Pesticide metabolites in soil: estimation of formation and degradation rates. In: Del Re, Attlio Amerigo Maria (eds) Human and Environmental Exposure to Xenobiotics. Proceedings, 11th Symposium on Pesticide Chemistry. Goliardica Pavese, Pavia, Italy, pp 165–170.

    Google Scholar 

  • Eadie BJ, Morehead NR, Landrum PF (1990) Three-phase partitioning of hydrophobic organic compounds in Great Lakes waters. Chemosphere 20:161–178.

    Article  CAS  Google Scholar 

  • EC (2002) Guidance document on aquatic ecotoxicology. Sanco/3268/2001 rev 4 (final). European Commission, Health & Consumer Protection Directorate — General, Brussels.

    Google Scholar 

  • Eisenreich SJ, Elzerman AW, Armstrong DE (1978) Enrichment of micronutrients, heavy metals and chlorinated hydrocarbons in wind-generated lake foam. Environ Sci Technol 12:413–417.

    Article  CAS  Google Scholar 

  • Elmarakby SA, Supplee D, Cook R (2001) Degradation of [14C]carfentrazone-ethyl under aerobic aquatic conditions. J Agric Food Chem 49:5285–5293.

    Article  CAS  PubMed  Google Scholar 

  • Ensz AP, Knapp CW, Graham DW (2003) Influence of autochthonous dissolved organic carbon and nutrient limitation on alachlor biotransformation in aerobic aquatic systems. Environ Sci Technol 37:4157–4162.

    Article  CAS  PubMed  Google Scholar 

  • EPA (1994) Reregistration Eligibility Decision (RED) Metalaxyl. EPA 738-R-94017. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1995a) Reregistration Eligibility Decision (RED) Asulam. EPA 738-R-95024. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1995b) Reregistration Eligibility Decision (RED) Linuron. EPA 738-R-95003. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1996a) Reregistration Eligibility Decision (RED) Amitrole. List A, Case 0095. U.S. Environmental Protection Agency, Office of Pesticide Programs, Special Review and Reregistration Division, Washington, DC.

    Google Scholar 

  • EPA (1996b) Reregistration Eligibility Decision (RED) Desmedipham. EPA 738R-96–006. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1997a) Reregistration Eligibility Decision (RED) Diflubenzuron. EPA 738R-97–008. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1997b) Reregistration Eligibility Decision (RED) Thiobencarb. EPA 738-R97–013. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1998a) Reregistration Eligibility Decision (RED) Bromoxynil. EPA 738-R98–013. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1998b) Reregistration Eligibility Decision (RED) Dichlobenil. EPA 738-R98–003. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1999a) Pesticide Reregistration Eligibility Decision (RED). Captan. EPA R-738-R-99–015. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (1999b) Pesticide Reregistration Status (REDs, IREDS and TREDs). Documents for Oxydemeton-methyl. Revised Environmental Fate and Effects Assessment. U.S. Environmental Protection Agency, Office of Pesticide Program, Washington, DC, part 1.

    Google Scholar 

  • EPA (2000a) Pesticide Reregistration Status (REDs, IREDS and TREDs). Documents for Malathion. Environmental Fate and Effects. U.S. Environmental Protection Agency, Office of Pesticide Program, Washington, DC.

    Google Scholar 

  • EPA (2000b) Interim Reregistration Eligibility Decision (IRED) Profenofos. EPA 738-R-00–006. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2000c) Interim Reregistration Eligibility Decision (IRED) Tribufos. EPA 738R-00–022. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2001a) Interim Reregistration Eligibility Decision (IRED) Acephate. EPA 738-R-01–013. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2001b) Reregistration Eligibility Decision (RED) Propargite. Case no. 0243. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2002a) Interim Reregistration Eligibility Decision (IRED) for Methamidophos. Case no. 0043. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2002b) Interim Reregistration Eligibility Decision (IRED) Naled. EPA 738R-02–008. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2003) Interim Reregistration Eligibility Decision (IRED) for Methyl Parathion. Case no. 0153. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • EPA (2004) Pesticide Fact Sheet, Dinotefuran. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC.

    Google Scholar 

  • Erstfeld KM (1999) Environmental fate of pyrethroids during spray drift and field runoff treatments in aquatic microcosms. Chemosphere 39:1737–1769.

    Article  CAS  PubMed  Google Scholar 

  • Erzgräber B, Görlitz G, Gottesbären B, Hosang J, Schäfer H, Resselen H, Aden K, Kloskowski R, Michalski B (2002) Recommendations for the calculation of the degradation behaviour of metabolites. Nachrichtenbl Deutsch Pflanzenschutzd 54:S25—S30.

    Google Scholar 

  • EU-Ex (1999a) Plant protection products: existing active substances decisions and review reports. Technical review reports. Fluroxypyr. 6848/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (1999b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Spiroxamine. 7584/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2000a) Plant protection products: existing active substances decisions and review reports. Technical review reports. Bentazone. 7585/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2000b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Esfenvalerate. 6846/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2000c) Plant protection products: existing active substances decisions and review reports. Technical review reports. Metsulfuron-methyl. 7593/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2000d) Plant protection products: existing active substances decisions and review reports. Technical review reports. Triasulfuron. 7589/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2001a) Plant protection products: existing active substances decisions and review reports. Technical review reports. 2,4-D. 7599 VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2001b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Lambda-Cyhalothrin. 7572/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2001c) Plant protection products: existing active substances decisions and review reports. Technical review reports. Pyridate. 7576/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2001d) Plant protection products: existing active substances decisions and review reports. Technical review reports. Thiabendazole. 7603/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2001e) Plant protection products: existing active substances decisions and review reports. Technical review reports. Thifensulfuron-methyl. 7577/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002a) Plant protection products: existing active substances decisions and review reports. Technical review reports. Beta-Cyfluthrin. 6841NI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Cyazofamid. Sanco/10379/2002-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002c) Plant protection products: existing active substances decisions and review reports. Technical review reports. Cyhalofop-butyl. 6500NI/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002d) Plant protection products: existing active substances decisions and review reports. Technical review reports. 2,4-DB. 76011VI197-final European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002e) Plant protection products: existing active substances decisions and review reports. Technical review reports. Deltamethrin. 6504/VI/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002f) Plant protection products: existing active substances decisions and review reports. Technical review reports. Ethofumesate. 6503/VI/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002g) Plant protection products: existing active substances decisions and review reports. Technical review reports. Glyphosate. 6511/VI199-final European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002h) Plant protection products: existing active substances decisions and review reports. Technical review reports. Iprodione. 5036/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002i) Plant protection products: existing active substances decisions and review reports. Technical review reports. Isoproturon. Sanco/3045/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2002j) Plant protection products: existing active substances decisions and review reports. Technical review reports. Linuron. 7595/VÚ97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003a) Plant protection products: existing active substances decisions and review reports. Technical review reports. Chlorpropham. Sanco/3041/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Mecoprop-P. Sanco/3065/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003c) Plant protection products: existing active substances decisions and review reports. Technical review reports. Pendimethalin. 7477NI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003d) Plant protection products: existing active substances decisions and review reports. Technical review reports. Propiconazole. Sanco/3049/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003e) Plant protection products: existing active substances decisions and review reports. Technical review reports. Propineb. Sanco/7574/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2003f) Plant protection products: existing active substances decisions and review reports. Technical review reports. Propyzamide. 65021VI199-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004a) Plant protection products: existing active substances decisions and review reports. Technical review reports. Alpha-Cypermethrin. Sanco/4335/2000final. European Commission, Health & Consumer Protection Directorate-General, E1 — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004b) Plant protection products: existing active substances decisions and review reports. Technical review reports. Benalaxyl. Sanco/4351/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004c) Plant protection products: existing active substances decisions and review reports. Technical review reports. Bromoxynil. Sanco/4347/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004d) Plant protection products: existing active substances decisions and review reports. Technical review reports. Desmedipham. Sanco/4061/2001-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004e) Plant protection products: existing active substances decisions and review reports. Technical review reports. Ioxynil. Sanco/4349/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-Ex (2004f) Plant protection products: existing active substances decisions and review reports. Technical review reports. Phenmedipham. Sanco/4060/2001-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (1998a) Plant protection products: new active substances decisions and review reports. Technical review reports. Azoxystrobin. 7581/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (1998b) Plant protection products: new active substances decisions and review reports. Technical review reports. Kresoxim-methyl. 7583/VI/97-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2001a) Plant protection products: new active substances decisions and review reports. Technical review reports. Cyclanilide. 7463/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2001b) Plant protection products: new active substances decisions and review reports. Technical review reports. Flupyrsulfuron-methyl. 5050/VI/97final. European Commission, Health & Consumer Protection Directorate-General, E1 — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002a) Plant protection products: new active substances decisions and review reports. Technical review reports. Acibenzolar-s-methyl. 6506/VI/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002b) Plant protection products: new active substances decisions and review reports. Technical review reports. Cinidon-ethyl. 6498/Ví/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002c) Plant protection products: new active substances decisions and review reports. Technical review reports. Ethoxysulfuron. 7461/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002d) Plant protection products: new active substances decisions and review reports. Technical review reports. Famoxadone. 6505/VI199-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002e) Plant protection products: new active substances decisions and review reports. Technical review reports. Florasulam. Sanco/1406/2001-rev 6. European Commission, Health & Consumer Protection Directorate-General, E1 — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002f) Plant protection products: new active substances decisions and review reports. Technical review reports. Flumioxazin. 7471/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002g) Plant protection products: new active substances decisions and review reports. Technical review reports. Foramsulfuron. Sanco/10324/2002-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002h) Plant protection products: new active substances decisions and review reports. Technical review reports. Imazamox Sanco/4325/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002i) Plant protection products: new active substances decisions and review reports. Technical review reports. Iprovalicarb. Sanco/2034/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002j) Plant protection products: new active substances decisions and review reports. Technical review reports. Metalaxyl-M. Sanco/3037/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002k) Plant protection products: new active substances decisions and review reports. Technical review reports. Oxadiargyl. Sanco/3053/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (20021) Plant protection products: new active substances decisions and review reports. Technical review reports. Oxasulfuron. Sanco/4323/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002m) Plant protection products: new active substances decisions and review reports. Technical review reports. Picolinafen. Sanco/1418/2001-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002n) Plant protection products: new active substances decisions and review reports. Technical review reports. Prosulfuron. Sanco/3055/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002o) Plant protection products: new active substances decisions and review reports. Technical review reports. Pymetrozine. 74551VI198-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002p) Plant protection products: new active substances decisions and review reports. Technical review reports. Pyraflufen-ethyl. Sanco/3039/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2002q) Plant protection products: new active substances decisions and review reports. Technical review reports. Sulfosulfuron. 74591VI198-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003a) Plant protection products: new active substances decisions and review reports. Technical review reports. Carfentrazone-ethyl. 74731VI/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003b) Plant protection products: new active substances decisions and review reports. Technical review reports. Dimethanamid-P. Sanco/1402/2001final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003c) Plant protection products: new active substances decisions and review reports. Technical review reports. Fenamidone. Sanco/1404/2001-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003d) Plant protection products: new active substances decisions and review reports. Technical review reports. Flufenacet. 7469/VI/98-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003e) Plant protection products: new active substances decisions and review reports. Technical review reports. Flurtamone. Sanco/10162/2003-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003f) Plant protection products: new active substances decisions and review reports. Technical review reports. Iodosulfuron. Sanco/10166/2003-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003g) Plant protection products: new active substances decisions and review reports. Technical review reports. Isoxaflutole. Sanco/3136/99-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003h) Plant protection products: new active substances decisions and review reports. Technical review reports. Mesotrione. Sanco/1416/2001-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003i) Plant protection products: new active substances decisions and review reports. Technical review reports. Picoxystrobin. Sanco/10196/2003-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003j) Plant protection products: new active substances decisions and review reports. Technical review reports. Propoxycarbazone. Sanco/4067/2001rev, final. European Commission, Health & Consumer Protection Directorate-General, E1 — Plant Health, Brussels.

    Google Scholar 

  • EU-New (2003k) Plant protection products: new active substances decisions and review reports. Technical review reports. Silthiofam. Sanco/1424/2001-final. European Commission, Health & Consumer Protection Directorate-General, E1 — Plant Health, Brussels.

    Google Scholar 

  • EU-New (20031) Plant protection products: new active substances decisions and review reports. Technical review reports. Trifloxystrobin. Sanco/4339/2000-final. European Commission, Health & Consumer Protection Directorate-General, El — Plant Health, Brussels.

    Google Scholar 

  • Fairchild JF, Sappington LC (2002) Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms. Arch Environ Contam Toxicol 43:198–202.

    Article  CAS  PubMed  Google Scholar 

  • FAO (1999a) JMPR: Evaluations of Pesticide Residues in Food. Bitertanol (144). Food and Agriculture Organization of the United Nations, New York, pp 3–95.

    Google Scholar 

  • FAO (1999b) JMPR: Evaluations of Pesticide Residues in Food. Pyriproxyfen (200). Food and Agriculture Organization of the United Nations, New York, pp 673–728.

    Google Scholar 

  • Florip P, Pancaldid D, Braschi I, Gessa C (2003) Behavior of four herbicides in a paddy field: simulation by a laboratory microcosm. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticides in Air, Plant, Soil and Water Systems. Proceedings, 12th Symposium on Pesticide Chemistry, Piacenza, Italy, pp 223–233.

    Google Scholar 

  • Formica SJ, Baron JA, Thibodeaux LJ, Valsaraj KT (1988) PCB transport into lake sediments, computational model and laboratory simulation. Environ Sci Technol 22:1435–1440.

    Article  CAS  PubMed  Google Scholar 

  • Gallé T, Van Lagen B, Kurtenbach A, Bierl R (2004) An FTIR-DRIFT study on river sediment particle structure: Implications for biofilm dynamics and pollutant binding. Environ Sci Technol 38:4496–4502.

    Article  PubMed  CAS  Google Scholar 

  • Gambrell RP, Reddy CN, Collard V, Green G, Patrick Jr WH (1981) Behavior of DDT, kepone and permethrin in sediment-water systems under different oxidation-reduction and pH conditions. EPA-600/3–81–038. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Gambrell RP, Taylor BA, Reddy KS, Patrick Jr WH (1984) Fate of selected toxic compounds under controlled redox potential and pH conditions in soil and sediment-water systems. EPA-600/3–83–018. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Gao JP, Maguhn J, Spitzauer P, Kettrup A (1997) Distribution of pesticides in the sediment of the small Teufelsweiher pond (southern Germany). Water Res 31:2811–2819.

    Article  CAS  Google Scholar 

  • Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998a) Sorption of pesticides in the sediment of the Teufelsweiher pond (southern Germany) I: Equilibrium assessments, effect of organic carbon content and pH. Water Res 32:1662–1672.

    Article  CAS  Google Scholar 

  • Gao JP, Maguhn J, Spitzauer P, Kettrup A (1998b) Sorption of pesticides in the sediment of the Teufelsweiher pond (southern Germany). II: Competitive adsorption, desorption of aged residues and effect of dissolved organic carbon. Water Res 32:2089–2094.

    Article  CAS  Google Scholar 

  • Garg PK, Agnihotri NP (1985) Persistence of carbofuran and bendiocarb in water and sediment. Ann Agric Res 6:183–186.

    Google Scholar 

  • GESAMP (1995) The sea-surface microlayer and its role in global change. GESAMP Reports and Studies, No. 59. WHO, Geneva. http://gesamp.imo.org/publicat.htm.

    Google Scholar 

  • Getsinger KD, Petty DG, Madsen JD, Skogerboe JG, Houtman BA, Haller WT, Fox AM (2000) Aquatic dissipation of the herbicide triclopyr in lake Minnetonka, Minnesota. Pestic Manag Sci 56:388–400.

    Article  CAS  Google Scholar 

  • Geyer JR, Maburg SA, Crosby DG (1996) Rice field surface micrlayers: collection, composition and pesticide enrichment. Environ Toxicol Chem 15:1676–1682.

    Article  Google Scholar 

  • Giddings JM, Biever RC, Racke KD (1997) Fate of chlorpyrifos in outdoor pond microcosms and effects on growth and survival of bluegill sunfish. Environ Toxicol Chem 16:2353–2362.

    Article  CAS  Google Scholar 

  • Gilliom RJ (2001) Pesticides in the hydrologic system - what do we know and what’s next? Hydrol Process 15:3197–3201.

    Article  Google Scholar 

  • Gobas FAPC, Maclean LG (2003) Sediment-water distribution of organic contaminants in aquatic ecosystems: the role of organic carbon mineralization. Environ Sci Technol 37:735–741.

    Article  CAS  PubMed  Google Scholar 

  • Goedkoop W, Peterson M (2003) The fate, distribution and toxicity of lindane in tests with Chironomus riparius: effects of bioturbation and sediment organic matter content. Environ Toxicol Chem 22:67–76.

    Article  CAS  PubMed  Google Scholar 

  • Golab T, Althaus WA, Wooten HL (1979) Fate of [14C] trifluralin in soil. J Agric Food Chem 27:163–179.

    Article  CAS  Google Scholar 

  • Graebing PW, Chib JS, Hubert TD, Gingerich WH (2004) Metabolism of niclosamide in sediment and water systems. J Agric Food Chem 52:5924–5932.

    Article  CAS  PubMed  Google Scholar 

  • Graetz DA, Chesters G, Daniel TC, Newland LW, Lee GB (1970) Parathion degradation in lake sediments. J Water Pollut Control Fed 42:R76–R94.

    Google Scholar 

  • Graham DW, Miles D, DeNoyelles F, Smith VH (1999a) Development of small outdoor microcosms for studying contaminant transformation rates and mechanisms under various water column conditions. Environ Toxicol Chem 18: 1124–1132.

    Article  CAS  Google Scholar 

  • Graham WH, Graham DW, Denoyelles F Jr, Smith VH, Larive CK, Thurman EM (1999b) Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms. Environ Sci Technol 33:4471–4476.

    Article  CAS  Google Scholar 

  • Groenendijk P, van der Kolk JWH, Travis KZ (1994) Prediction of exposure concentrations in surface waters. In: Hill IR, Heinbach F, Leeuwangh P, Matthiessen P (eds) Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis, Boca Raton, pp 105–125.

    Google Scholar 

  • Gschwend PM, Wu SC (1985) On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ Sci Technol 19:90–96.

    Article  CAS  Google Scholar 

  • Gucinski H, Goupil DW, Baier RE (1981) Sampling and composition of the surface microlayer. In: Eisenreich SJ (ed) Atmospheric Pollutants in Natural Waters. Ann Arbor Press, Ann Arbor, Mi, pp 165–180.

    Google Scholar 

  • Gupta S, Gajbhiye VT (2005) Dissipation of β-cyfluthrin in water as affected by sediment, pH and temperature. Bull Environ Contam Toxicol 74:40–47.

    Article  CAS  PubMed  Google Scholar 

  • Guth JA (1981) Experimental approaches to studying the fate of pesticides in soil. In: Hutson DH, Roberts TR (eds) Progress in Pesticide Biochemistry, vol 1. Wiley, New York, pp 85–114.

    Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:29–72.

    Article  Google Scholar 

  • Halarnkar PP, Leimkuehler WM, Green DL, Marlow VA (1997) Degradation of [14C]tebupirimphos under anaerobic aquatic conditions. J Agric Food Chem 45:2349–2353.

    Article  CAS  Google Scholar 

  • Hand LH, Kuet SF, Lane MCG, Maund SJ, Warinton JS, Hill IR (2001) Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environ Toxicol Chem 20:1740–1745.

    CAS  PubMed  Google Scholar 

  • Handoo JK (1986) The nature of sediments in some wetlands. Acta Hydrochim Hydrobiol 14:485–493.

    Article  CAS  Google Scholar 

  • Hardy JT (1982) The sea surface microlayer: biology, chemistry and anthropogenic enrichment. Prog Oceanogr 11:307–328.

    Article  Google Scholar 

  • Hastings ME, Poppe LJ, Hathaway JC (2001) Surficial sediment database. In: USGS East-coast sediment analysis: procedures, database and georeferenced displays. Open-file report 00–358. U.S. Geological Survey, Washington, DC.

    Google Scholar 

  • Headley JV, Gandrass J, Kuballa J, Peru KM, Gong Y (1998) Rates of sorption and partitioning of contaminants in river biofilm. Environ Sci Technol 32:3968–3973.

    Article  CAS  Google Scholar 

  • Hein W, Fent G, Kubiak R (2003) A new bath test system to investigate the fate of 14C-labeled pesticides in water/sediment systems under outdoor conditions. In: Del Re AAM, Capri E, Padovani L, Trevisan M (eds) Pesticides in Air, Plant, Soil and Water Systems. Proceedings, 12th Symposium on Pesticide Chemistry, Piacenza, Italy, pp 63–72.

    Google Scholar 

  • Hellpointner E (2001) Environmental behavior of fentrazamide. PflanzenschutzNachrichten Bayer 54:75–86.

    CAS  Google Scholar 

  • Hellpointner E, Borchers H (2004) Behavior of prothioconazole (JAU 6476) in the environment. Pflanzenschuts-Nachrichten Bayer 57:163–180.

    CAS  Google Scholar 

  • Helweg C, Mogensen BB, Sotensen PB, Madsen T, Bossi R, Rasmussen D, Petersen S (2003) Fate of pesticides in surface waters, laboratory and field experiments. Pesticide Research Nr. 68. Danish Environmental Protection Agency, Denmark

    Google Scholar 

  • Henneböle J (1999) Environmental behaviour of iprovalicarb (SZX 0722). Pflanzenschutz-Nachrichten Bayer 52:107–114.

    Google Scholar 

  • Higashi RM, Crosby DG (1987) A physical-chemical microcosm for ricefield environmental fate studies. In: Greenhalgh R, Roberts TR (eds) Proceedings, Pesticide Science and Biotechnology, 6th IUPAC Congress of Pesticide Chemistry. Blackwell, Oxford, pp 445–448.

    Google Scholar 

  • Hill IR, Shaw JL, Maund SJ (1994) Fate of chlorpyrifos in indoor microcosms and outdoor experimental ditches. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis, Boca Raton, pp 249–271.

    Google Scholar 

  • Hoagland RE, Zablotowicz RM (2000) The role of plant and microbial hydrolytic enzymes in pesticide metabolism. In: Hall JC, Hoagland RE, Zablotowicz RM (eds) Pesticide Biotransformation in Plants and Microorganisms: Similarities and Divergences. ACS Symposium Series 777. American Chemical Society, Washington, DC, pp 58–88.

    Chapter  Google Scholar 

  • Houx NWH, Dekker A (1987) A test system for the determining of the fate of pesticides in surface water. J Environ Anal Chem 29:37–59.

    Article  CAS  Google Scholar 

  • Huang W, Peng P, Yu Z, Fu J (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl Geochem 18:955–972.

    Article  CAS  Google Scholar 

  • Huber G, Gémes E (1981) Decomposition of urea herbicide linuron [3-(3,4dichlorophenyl)-1-methoxy-1-methylurea] in the water of lake balaton. J Ind Chem 9:113–124.

    CAS  Google Scholar 

  • Hulbert MH, Bennett RH, Baerwald RJ, Long RL, Curry KJ, Curry AL, Abril MT (2002) Observation of the sediment-water interface: marine and freshwater environments. Mar Georesour Geotechnol 20:255–274.

    Article  CAS  Google Scholar 

  • Hunter KA, Liss PS (1981) Organic sea surface films. In: Ouursma EK, Dawson R (eds) Marine Organic Chemistry: Evolution, Composition, Interactions and Chemistry of Organic Matter in Seawater. Elsevier Oceanography Series 31. Elsevier, Amsterdam, pp 259–298.

    Chapter  Google Scholar 

  • Ide A, Niki Y, Sakamoto F, Watanabe I, Watanabe H (1972) Decomposition of pentachlorophenol in paddy soil. Agric Biol Chem 36:1937–1944.

    Article  CAS  Google Scholar 

  • Inao K, Kitamura Y (1999) Pesticide paddy field model (PADDY) for predicting pesticide concentrations in water and soil in paddy fields. Pestic Sci 55:38–46.

    Article  CAS  Google Scholar 

  • Isensee AR, Kearney PC, Jones GE (1979) Modeling aquatic ecosystems for metabolic studies. In: Khan MAQ, Lech JJ, Menn JJ (eds) Pesticide and Xenobiotic Metabolism in Aquatic Organisms. ACS Symposium Series 99. American Chemical Society, Washington, DC, pp 195–216.

    Chapter  Google Scholar 

  • Jackson R, Douglas M (1999) An aquatic risk assessment for cyhalofop-butyl: a new herbicide for control of barnyard grass in rice. In: Del Re, Attlio Amerigo Maria (eds) Human and Environmental Exposure to Xenobiotics. Proceedings, 11th Symposium on Pesticide Chemistry. Goliardica Pavese, Pavia, Italy, pp 345–354.

    Google Scholar 

  • Jinhe S, Jianying G, Ziyuan C (1989) Fate of carbofuran in model rice/fish ecosystems. Pestic Sci 26:147–157.

    Article  Google Scholar 

  • JMAFF (2000) Studies of fate in flooded aerobic soil. Guidelines for preparation of study results submitted when applying for registration of agricultural chemicals. Notification No. 12-Nousan-8147, 2–5–1. Director-General, Agricultural Protection Bureau, Ministry of Agriculture, Forestry and Fisheries, Japan.

    Google Scholar 

  • Johnson PC, Kennedy JH, Morris RG, Hambleton FE, Graney RL (1994) Fate and effects of cyfluthrin (pyrethroid insecticide) in pond mesocosms and concrete microcosms. In: Graney RL, Kennedy JH, Rodgers JH (eds) Aquatic Mesocosm Studies in Ecological Risk Assessment. Lewis, Boca Raton, pp 337–371.

    Google Scholar 

  • Jones TW, Kemp WM, Stevenson JC, Means JC (1982) Degradation of atrazine in estuarine water/sediment systems and soils. J Environ Qual 11:632–638.

    Article  CAS  Google Scholar 

  • Kaiser JP, Feng Y, Bollag JM (1996) Microbiol metabolism of pyridine, quinoline, acridine and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kale SP, Carvalho FP, Raghu K, Sherkhane PD, Pandit GG, Mohan Rao A, Mukherjee PK, Murthy NB (1999) Studies on degradation of 14C-chlorpyrifos in the marine environment. Chemosphere 39:969–976.

    Article  CAS  PubMed  Google Scholar 

  • Kalsch W, Knacker T, Robertz M, Studinger G, Franke C (1998) Partitioning and mineralization of [14C] lindane in a laboratory sediment-water system. Environ Toxicol Chem 17:662–669.

    CAS  Google Scholar 

  • Kanazawa J, Isensee AR, Kearney PC (1975) Distribution of carbaryl and 3,5-xylyl methylcarbamate in an aquatic model ecosystem. J Agric Food Chem 23:760–763.

    Article  CAS  PubMed  Google Scholar 

  • Karickhoff SW, Morris KR (1985) Impact of tubificid oligocheates on pollutant transport in bottom sediments. Environ Sci Technol 19:51–56.

    Article  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248.

    Article  CAS  Google Scholar 

  • Karns JS, Muldoon MT, Mulbry WW, Derbyshire MK, Kearney PC (1987) Use of microorganisms and microbial systems in the degradation of pesticides. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in Agricultural Chemistry. ACS Symposium Series 334. American Chemical Society, Washington, DC, pp 156–170.

    Chapter  Google Scholar 

  • Katagi T (2002) Abiotic hydrolysis of pesticides in the aquatic environment. Rev Environ Contam Toxicol 175:79–261.

    CAS  PubMed  Google Scholar 

  • Katagi T (2004) Photodegradation of pesticides on plant and soil surfaces. Rev Environ Contam Toxicol 182:1–195.

    CAS  PubMed  Google Scholar 

  • Kattner G, Nagel K, Eberlein K, Hammer KD (1985) Components of natural surface and subsurface waters. Oceanol Acta 8:175–183.

    CAS  Google Scholar 

  • Kaufman DD (1974) Degradation of pesticides by soil microorganisms. In: Dinauer RC (ed) Pesticides in Soil and Water. Soil Science Society of America, Madison, WI, pp 133–202.

    Google Scholar 

  • Kazumi J, Capone DG (1995) Microbial aldicarb transformation in aquifer, lake and salt marsh sediments. Appl Environ Microbiol 61:2820–2829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kewu Y, Hanhong M, Fengahun A (1997) Fate of pesticide N’-(2,4-dimethylphenyl)-N-methylformamide hydrochloride in simulated aquatic ecosystem. J Environ Sci 9:372–375.

    Google Scholar 

  • Kile DE, Chiou CT, Zhou H, Li H, Xu O (1995) Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ Sci Technol 29:1401–1406.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Liu KH, Kang SH, Koo SJ, Kim JH (2003) Degradation of the sulfonylurea herbicide LGC-42153 in flooded soil. Pest Manag Sci 59:1260–1264.

    Article  CAS  PubMed  Google Scholar 

  • Klaus U, Mohamed S, Volk M, Spiteller M (1998) Interaction of aquatic humic substances with anilazine and its derivatives: the nature of the bound residues. Chemosphere 37:341–361.

    Article  CAS  Google Scholar 

  • Klausen J, Tröber SP, Haderlein SB, Schwarzenbach RP (1995) Reduction of substituted nitrobenzenes by Fe (II) in aqueous mineral suspensions. Environ Sci Technol 29:2396–2404.

    Article  CAS  PubMed  Google Scholar 

  • Klein O, Reiner H, Scholz K (1997) Metabolism and residues of spinoxamine (KWG 4168) in plants, animals and the environment. Pflanzenschutz-Nachrichten Bayer 50:71–98.

    CAS  Google Scholar 

  • Klupinski TP, Chin YP (2003) Abiotic degradation of trifluralin by Fe (II): kinetics and transformation pathways. Environ Sci Technol 37:1311–1318.

    Article  CAS  Google Scholar 

  • Knulst JC, Backlund P, Hessen DO, Riise G, Södergren A (1997) Response of surface microlayers to artificial acid precipitation in a meso-humic lake in Norway. Water Res 31:2177–2186.

    Article  CAS  Google Scholar 

  • Knulst JC, Boerschke RC, Loemo S (1998) Differences in organic surface micro-layers from an artificially acidified and control lake, elucidated by XAD-8/XAD4 tandem separation and solid state 13C NMR spectroscopy. Environ Sci Technol 32:8–12.

    Article  CAS  Google Scholar 

  • Knuth ML, Heinis LJ (1992) Dissipation and persistence of chlorpyrifos within littoral enclosures. J Agric Food Chem 40:1257–1263.

    Article  CAS  Google Scholar 

  • Knuth ML, Heinis LJ (1995) Distribution and persistence of diflubenzuron within littoral enclosure mesocosms. J Agric Food Chem 43:1087–1097.

    Article  CAS  Google Scholar 

  • Kodaka R, Sugano T, Katagi T, Takimoto Y (2002) Aerobic aquatic metabolism of fenitrothion and its oxon analog in water-sediment systems. J Pestic Sci 27: 235–241.

    Article  CAS  Google Scholar 

  • Kodaka R, Sugano T, Katagi T, Takimoto Y (2003) Comparative metabolism of oragnophosphorus pesticides in water-sediment systems. J Pestic Sci 28:175–182.

    Article  CAS  Google Scholar 

  • Kodaka R, Sugano T, Katagi T, Takimoto Y (2004) Aerobic aquatic soil metabolism of pesticides in water-and sediment-spiked systems. J Pestic Sci 29:332–338.

    Article  CAS  Google Scholar 

  • Koelmans AA, Hubert E, Koopman HW, Portielje R, Crum SJH (2000) Modeling the vertical distribution of carbendazim in sediments. Environ Toxicol Chem 19:793–800.

    Article  CAS  Google Scholar 

  • Kollig HP, Parrish RS, Holm HW (1987) An estimate of the variability in biotransformation kinetics of xenobiotics in natural waters by aufwuchs communities. Chemosphere 16:49–60.

    Article  CAS  Google Scholar 

  • Kördel W, Stein B (1997) Fate of the organotin pesticide azocyclotin in aquatic microcosms. Chemosphere 35:191–207.

    Article  Google Scholar 

  • Krieger A, Weinberger P, Greenhalgh R (1989) A mathematical model used to predict the modifying effects of adjuvants on fenitrothion insecticide in lake and estuarine water systems. In: Chow PNP (ed) Adjuvants and Agrochemicals, vol 2. CRC Press, Boca Raton, pp 157–167.

    Google Scholar 

  • Krohn J (2001) Behavior of triacloprid in the environment. PflanzenschutzNachrichten Bayer 54:281–290.

    CAS  Google Scholar 

  • Krohn J, Hellpointner E (2002) Environmental fate of imidacloprid. PflanzenschutzNachrichten Bayer 55(special edition):3–26.

    CAS  Google Scholar 

  • Kurogochi S, Köster J (1998) Metabolism and residues of carpropamid (KTU 3616) in plants, animals and the environment. Pflanzenschutz-Nachrichten Bayer 51:219–244.

    Google Scholar 

  • Lal R (1982) Accumulation, metabolism and effects of organophosphorus insecticides on microorganisms. Adv Appl Microbiol 28:149–200.

    Article  CAS  PubMed  Google Scholar 

  • Lalah JO, Schramm KW, Henkelmann B, Lenoir D, Behechti A, Günther K, Kettrup A (2003) The dissipation, distribution and fate of a branched 14C-nonylphenol isomer in lake water/sediment systems. Environ Pollut 122:195–203.

    Article  CAS  PubMed  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JR, Kopf G, Headley JV, Neru TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47:634–641.

    Article  CAS  PubMed  Google Scholar 

  • Leake CR (2003) Fenamidone: Metabolism in plants. Pflanzenschutz-Nachrichten Bayer 56:533–546.

    CAS  Google Scholar 

  • Lee RF, Ryan C (1979) Microbial degradation of organochlorine compounds in estuarine waters and sediments. EPA-600/9–79–102. In: Proceedings, Workshop: Microbial Degaradation Pollution Marine Environment, 1978. U.S. Environmental Protection Agency, Washington, DC, pp 443–450.

    Google Scholar 

  • Lee S, Gan J, Kim JS, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23:1–6.

    Article  CAS  Google Scholar 

  • Leeuwangh P, Brock TCM, Kersting K (1994) An evaluation of four types of freshwater model ecosystem for assessing the hazard of pesticides. Hum Exp Toxicol 13:888–899.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann RG, Miller JR, Cleveland CB (1993) Fate of fluroxypyr in water. Weed Res 33:197–204.

    Article  CAS  Google Scholar 

  • Leistra M, Zwears AJ, Warinton JS, Crum SJH, Hand LH, Beltman WHJ, Maund SJ (2003) Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Manag Sci 60:75–84.

    Article  CAS  Google Scholar 

  • Lewis DL, Holm HW (1981) Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms. Appl Environ Microbiol 42:698–703.

    CAS  Google Scholar 

  • Lin HT, Wong SS, Li GC (2001) Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan. J Environ Health Sci B36:409–420.

    Article  CAS  Google Scholar 

  • Lin K, Carlson DJ (1991) Photo-induced degradation of tracer phenols added to marine surface microlayers. Mar Chem 33:9–22.

    Article  CAS  Google Scholar 

  • Linders J, Adriaanse P, Allen R, Capri E, Gouy V, Hollis J, Jarvis N, Klein M, Lolos P, Maier WM, Maund S, Pais C, Russel M, Smeets L, Teixeira JL, Vizantinopoulos S, Yon D (2003) FOCUS Surface Water Scenarios in the EU Evaluation Process Under 91/414/EEC. Sanco/4802/2001-rev 2 final. European Commission, Brussels.

    Google Scholar 

  • Liu W, Gan JJ, Lee S, Kabashima JN (2004) Phase distribution of synthetic pyrethroids in runoff and stream water. Environ Toxicol Chem 23:7–11.

    Article  PubMed  Google Scholar 

  • Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218.

    Article  PubMed  CAS  Google Scholar 

  • Loor-Vela SX, Simmons JJC, Simmons FW, Raskin L (2003) Dissipation of [14C]acetochlor herbicide under anaerobic aquatic conditions in flooded soil microcosms. J Agric Food Chem 51:6767–6773.

    Article  CAS  PubMed  Google Scholar 

  • Lotse EG, Graetz DA, Chesters G, Lee GB, Newland LW (1968) Lindane adsorption by lake sediments. Environ Sci Technol 2:353–357.

    Article  CAS  Google Scholar 

  • Lutnicka H, Bogacka T, Wolska L (1999) Degradation of pyrethroids in an aquatic ecosystem model. Water Res 33:3441–3446.

    Article  CAS  Google Scholar 

  • Macalady DL, Wolfe NL (1984) Abiotic hydrolysis of sorbed pesticides. In: Krueger RF, Seiber JN (eds) Treatment and Disposal of Pesticide Wastes. ACS Symposium Series 259. American Chemical Society, Washington DC, pp 221–224.

    Chapter  Google Scholar 

  • Macalady DL, Wolfe NL (1985) Effects of sediment sorption and abiotic hydrolyses. 1. Organophosphorothioate esters. Agric Food Chem 33:167–173.

    Article  CAS  Google Scholar 

  • MacRae IC (1989) Microbial metabolism of pesticides and structurally related compounds. Rev Environ Contain Toxicol 109:1–87.

    CAS  Google Scholar 

  • Maguire RJ, Hale EJ (1980) Fenitrothion sprayed on a pond: kinetics of its distribution and transformation in water and sediment. J Agric Food Chem 28:372–378.

    Article  CAS  Google Scholar 

  • Maguire RJ, Carey JH, Hart JH, Tkacz RJ, Lee HB (1989) Persistence and fate of deltamethrin sprayed on a pond. J Agric Food Chem 37:1153–1159.

    Article  CAS  Google Scholar 

  • Malekani K, Hellpointner E (2002) The environmental profile of propoxycarbazone—sodium (BAY MKH 6561). Pflanzenschutz-Nachrichten Bayer 55: 101–110.

    CAS  Google Scholar 

  • Maloney SE, Maule A, Smith ARW (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate and fluvalinate. Appl Environ Microbiol 54:2874–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall WK, Roberts JR (1977) Simulation modeling of the distribution of pesticides in ponds. In: Fentrothion: The Long-Term Effects of Its Use in Forest Ecosystems. NRCC No.16073. National Research Council of Canada (NRCC), Associate Committee on Scientific Criteria for Environmental Quality, Ottawa, pp 253–278.

    Google Scholar 

  • Martin JD, Crawford CG, Larson SJ (2003) Pesticides in streams: summary statistics. Preliminary results from cycle I of the national water quality assessment program (NAWQA), 1992–2001. U.S. Geological Survey, NAWQA Pesticide National Synthesis Project. http://www.ca.water.usgs.gov/pnsp.

  • Maund SJ, Hamer MJ, Lane MCG, Farrelly E, Rapley JH, Goggin VM, Gentle WE (2002) Partitioning, bioavailability and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ Toxicol Chem 21:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Karaaj RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater contaminants of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183.

    Article  CAS  Google Scholar 

  • Mersie W, Liu J, Seybold C, Tierney D (1998a) Extractability and degradation of atrazine in a submerged sediment. Weed Sci 46:480–486.

    Article  CAS  Google Scholar 

  • Mersie W, Seybold C, Tierney D, McNamee C (1998b) Effect of temperature, disturbance and incubation time on release and degradation of atrazine in water columns over two types of sediments. Chemosphere 36:1867–1881.

    Article  CAS  Google Scholar 

  • Mersie W, McNamee C, Seybold CA, Tierney DP (2000) Diffusion and degradation of atrazine in a water/sediment system. Environ Toxicol Chem 19:2008–2014.

    Article  CAS  Google Scholar 

  • Mersie W, McNamee C, Seybold C, Wu J, Tierney D (2004) Degradation of metolachlor in bare and vegetated soils and in simulated water-sediment systems. Environ Toxicol Chem 23:2627–2632.

    Article  CAS  PubMed  Google Scholar 

  • Meyers PA, Kawka OE (1982) Fractionation of hydrophobic organic materials in surface microlyaers. J Great Lakes Res 8:288–298.

    Article  CAS  Google Scholar 

  • Meyers PA, Owen RM (1980) Sources of fatty acids in lake Michigan surface micro-layers and subsurface waters. Geophys Res Lett 7:885–888.

    Article  CAS  Google Scholar 

  • Meyers P, Schelske CL (2000) An inexpensive, optical (infrared) detector to locate the sediment/water interface in lakes with unconsolidated sediments. J Paleolimnol 23:201–205.

    Article  Google Scholar 

  • Meylan W, Howard PH, Boethling RS (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ Sci Technol 26:1560–1567.

    Article  CAS  Google Scholar 

  • Miller GC, Zepp RG (1979a) Effects of suspended sediments on photolysis rates of dissolved pollutants. Water Res 13:453–459.

    Article  CAS  Google Scholar 

  • Miller GC, Zepp RG (1979b) Photoreactivity of aquatic pollutants sorbed on suspended desiments. Environ Sci Technol 13:860–863.

    Article  CAS  Google Scholar 

  • Miyamoto J, Mikami N, Takimoto Y (1990) The fate of pesticides in aquatic ecosystems. In: Hutson DH, Roberts TR (eds) Progress in Pesticide Biochemistry and Toxocology. Wiley, New York, pp 123–147.

    Google Scholar 

  • Miyamoto J, Klein W, Takimoto Y, Roberts TR (1985) Critical evaluation of model ecosystems. Pure Appl Chem 57:1523–1536.

    Article  CAS  Google Scholar 

  • Miyazaki S, Sikka HC, Lynch RS (1975) Metabolism of dichlobenil by microorganisms in the aquatic environment. J Agric Food Chem 23:365–368.

    Article  CAS  PubMed  Google Scholar 

  • Mortland MM, Halloran LJ (1976) Polymerization of aromatic molecules on smectite. Soil Sci Soc Am J 40:367–370.

    Article  CAS  Google Scholar 

  • Møhlenberg F, Petersen S, Gustaysson K, Lauridsen T, Friberg N (2001) Mesocosm experiments in the approval procedure for pesticides. A literature study on effects of mesocosm characteristics and validity of extrapolation methods to protect sensitive species. Pesticide Research No. 56. Danish Environmental Protection Agency, Denmark.

    Google Scholar 

  • Muir DCG (1991) Dissipation and transformation in water and sediment. In: Grover R, Cessna AJ (eds) Environmental Chemistry of Herbicides, vol 2. CRC Press, Boca Raton, pp 1–89.

    Google Scholar 

  • Muir DCG, Grift NP (1982) Fate of fluridone in sediment and water in laboratory and field experiments. J Agric Food Chem 30:238–244.

    Article  CAS  Google Scholar 

  • Muir DCG, Yarechewski AL (1982a) Degradation of niclosamide (2’,5-dichloro4’-nitrosalicylamide) in sediment and water systems. J Agric Food Chem 30:1028–1031.

    Article  CAS  Google Scholar 

  • Muir DCG, Yarechewski AL (1982b) Degradation of terbutryn in sediments and water under various redox conditions. J Environ Sci Health B17:363–380.

    Article  CAS  Google Scholar 

  • Muir DCG, Yarechewski AL (1984) Degradation of methoxychlor in sediments under various redox conditions. J Environ Sci Health B19:271–295.

    Article  Google Scholar 

  • Muir DCG, Rawn GP, Grift NP (1985) Fate of pyrethroid insecticide deltamethrin in small ponds: a mass balance study. J Agric Food Chem 33:603–609.

    Article  CAS  Google Scholar 

  • Muir DCG, Kenny DF, Grift NP, Robinson RD,Titman RD, Murkin HR (1991) Fate and acute toxicity of bromoxynil esters in an experimental prairie wetland. Environ Toxicol Chem 10:395–406.

    Article  CAS  Google Scholar 

  • Muir DCG, Yarechewski AL, Neal BR (1992) Influence of surface films on the fate of deltamethrin following aerial application to prairie ponds. Environ Toxicol Chem 11:581–591.

    Article  CAS  Google Scholar 

  • Nakamura Y, Ishikawa K, Kuwatsuka S (1977) Degradation of benthiocarb in soils as affected by soil conditions. J Pestic Sci 2:7–16.

    Article  CAS  Google Scholar 

  • Napolitano GE, Richmond JE (1995) Enrichment of biogenic lipids, hydrocarbons and PCBs in stream-surface foams. Environ Toxicol Chem 14:197–201.

    Article  CAS  Google Scholar 

  • Ngim KK, Crosby DG (2001) Fate and kinetics of carfentrazone-ethyl herbicide in California, USA, flooded rice fields. Environ Toxicol Chem 20:485–490.

    Article  CAS  PubMed  Google Scholar 

  • Nhan DD, Carvalho FP, Nam BQ (2002) Fate of 14C-chlorpyrifos in the tropical estuarine environment. Environ Technol 23:1229–1234.

    Article  CAS  PubMed  Google Scholar 

  • Norkrans B (1980) Surface microlayers in aquatic environments. Adv Microb Ecol 4:51–85.

    Article  CAS  Google Scholar 

  • OECD (2000) OECD Guideline for the testing of chemicals: adsorption-desorption using a batch equilibrium method. No. 106. OECD Publishing, Brussels.

    Book  Google Scholar 

  • OECD (2002) OECD Guideline for the testing of chemicals: aerobic and anaerobic transformation in aquatic sediment systems. No. 308. OECD Publishing, Brussels.

    Book  Google Scholar 

  • Ohyama H, Kuwatsuka S (1978) Degradation of bifenox, a diphenyl ether herbicide, methyl 5-(2,4-dichlorophenyl)-2-nitrobenzoate in soils. J Pestic Sci 3: 401–410.

    Article  CAS  Google Scholar 

  • Oliver BG, Cosgrove EG, Carey JH (1979) Effect of suspended sediments on the photolysis of organics in water. Environ Sci Technol 13:1075–1077.

    Article  CAS  Google Scholar 

  • O’Neill EJ, Cripe CR, Mueller LH, Connolly JP, Pritchard PH (1989) Fate of fenthion in salt-marsh environments: II. Transport and biodegradation in microcosms. Environ Toxicol Chem 8:759–768.

    Article  Google Scholar 

  • Ongley E (1996) Sediment measurements. In: Water quality monitoring: a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. UNEP/WHO, chap 13. http://www.who.int/docstore/water_sanitation_health/wgmonitor/begin.htm

    Google Scholar 

  • Othman MAS, El-Nager M, Abdel-All A, Ibrahim S, Khamis A (1986) Analysis of fenvalerate and flucythrinate in aquatic ecosystems in relation to their toxicity. Alex Sci Exch 7:245–261.

    CAS  Google Scholar 

  • Ou LT (2000) Pesticide biodegradation. In: Lederberg J (ed) Encyclopedia of Microbiology, 2nd Ed, vol 3. Academic Press, New York, pp 594–606.

    Google Scholar 

  • Oyamada M, Kuwatsuka S (1979) Degradation of CNP, a diphenyl ether herbicide, in flooded soil under oxidative and reductive conditions. J Pestic Sci 4:157–163.

    Article  CAS  Google Scholar 

  • Oyamada M, Igarashi K, Kuwatsuka S (1980) Degradation of the herbicide naproanilide, 1-(2-naphthoxy)-propionanilide, in flooded soils under oxidative and reductive conditions. J Pestic Sci 5:495–501.

    Article  CAS  Google Scholar 

  • Paris DF, Steen WC, Baughman GL, Barnett JT Jr (1981) Second-order model to predict microbial degradation of organic compounds in natural waters. Appl Environ Microbiol 41:603–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park RA, Firlie B, Camacho R, Sappington K, Coombs M, Mauriello D (1995) AQUATOX, a general fate and effects model for aquatic ecosystems. In: Toxic Substances in Water Environments: Assessment and Control. Proceedings of the Water Environment Federation Specialty Conference, Water Environment Federation, Alexandria, VA, part 3, pp 7–17.

    Google Scholar 

  • Patrick WH, Gambrell RP, Faulkner SP (1996) Redox measurements of soils. In: Bigham JM (ed) Methods of Soil Analysis. Part 3, Chemical Methods. SSSA Book Series No. 5. Soil Science Society of America, Madison, WI, pp 1255–1273.

    Google Scholar 

  • Peijnenburg WJGM, T Hart MJ, Den Hollander HA, Van De Meent D, Verboom HH, Wolfe NL (1992a) Reductive transformation of halogenated aromatic hydrocarbons in anaerobic water-sediment systems: kinetics, mechanisms and products. Environ Toxicol Chem 11:289–300.

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, T Hart MJ, Den Hollander HA, Van De Meent D, Verboom HH, Wolfe NL (1992b) QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems. Environ Toxicol Chem 11:301–314.

    Article  CAS  Google Scholar 

  • Percival JB, Lindsay PJ (1997) Measurement of physical properties of sediments. In: Mudroch A, Azcue JM, Mudroch P (eds) Manual of Physico-Chemical Analysis of Aquatic Sediments. Lewis, Boca Raton, pp 7–45.

    Google Scholar 

  • Petty DG, Skogerboe JG, Getsinger KD, Foster DR, Houtman BA, Fairchild JF, Anderson LW (2001) The aquatic fate of troclopyr in whole-pond treatment. Pest Manag Sci 57:764–775.

    CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11.

    Article  CAS  Google Scholar 

  • Plane JMC, Zika RG, Zepp RG, Burns LA (1985) Photochemical modeling applied to natural waters. In: Zika RG, Cooper WJ (eds) Photochemistry of Environmental Aquatic Systems. ACS Symposium Series 327. American Chemical Society, Washington, DC, pp 250–267.

    Google Scholar 

  • PMRA (1996) Proposed Regulatory Decision Document. PRDD 96–01. Tebufenozide. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2001a) Proposed Regulatory Decision Document. PRDD 2001–05. Trinexapac-ethyl. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2001b) Regulatory Note. REG 2001–08. Cloransulam-methyl. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2001c) Regulatory Note. REG 2001–09. Zoxamide Zoxium® 80W Fungicide, Gravel® 75DF Fungicide. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2002) Regulatory Note. REG 2002–05. Acetamiprid. Assail Brand 70WP Insecticide, Chipco Brand Tristar 70WSP Insecticide, Pristine Brand RTU Insecticide. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2003a) Regulatory Note. REG 2003–03. Fenbuconazole. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2003b) Regulatory Note. REG 2003–12. Fluazinam. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2004a) Proposed Regulatory Decision Document. PRDD 2004–01. Tepraloxydim. Equinox EC, Dash HC. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2004b) Regulatory Note. REG 2004–02. Boscalid. BAS 510. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • PMRA (2004c) Regulatory Note. REG 2004–08. Methoxyfenozide. Pesticide Management Regulatory Agency, Health Canada, Ottawa.

    Google Scholar 

  • Prins HBA, Snel JFH, Helder RJ, Zanstra PE (1980) Photosynthetic HCO3 utilization and OH- excretion in aquatic angiosperms. Plant Physiol 66:818–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard PH, Bourquin AW, Frederickson HL, Maziarz T (1979) System design factors affecting environmental fate studies in microcosms. EPA-600/9–79–012.

    Google Scholar 

  • Proceedings, Workshop: Microbial Degradation Pollution Marine Environment, 1978. U.S. Environmental Protection Agency, Washington, DC, pp 251–272.

    Google Scholar 

  • Pritchard PH, Monti CA, O’Neill EJ, Connolly JP, Ahearn DG (1986) Movement of kepone© (chlordane) across an undisturbed sediment-water interface in laboratory systems. Environ Toxicol Chem 5:647–657.

    Article  CAS  Google Scholar 

  • Pritchard PH, O’Neill EJ, Spain CM, Ahearn DG (1987) Physical and biological parameters that determine the fate of p-chlorophenol in laboratory test systems. Appl Environ Microbiol 53:1833–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radosevich M, Tuovinen OH (2004) Microbial degradation of atrazine in soils, sediments and surface water. In: Gan JJ, Zhu PC, Aust SD, Lemley AT (eds) Pesticide Decontamination and Detoxification. ACS Symposium Series 863. American Chemical Society, Washington, DC, pp 129–139.

    Google Scholar 

  • Ramanand K, Nagarajan A, Suflita JM (1993) Reductive dechlorination of the nitrogen heterocyclic herbicide picloram. Appl Environ Micobiol 59:2251–2256.

    Article  CAS  Google Scholar 

  • Ramesh A, Maheswari ST (2004) Dissipation of alachlor in cotton plant, soil and water and its bioaccumulation in fish. Chemosphere 54:647–652.

    Article  CAS  PubMed  Google Scholar 

  • Rand GM, Clark JR, Holmes CM (2000) Use of outdoor freshwater pond microcosms. I. Microcosm design and fate of pyridaben. Environ Toxicol Chem 19:387–395.

    Article  CAS  Google Scholar 

  • Reeves GL (1999) An experimental design for outdoor water/sediment studies using the 14C-labeled pesticides. In: Del Re, Attilio Amerigo Maria (eds) Human and Exvironmental Exposure to Xenobiotics, 11th Symposium on Pesticide Chemistry. Goliardica Pavese, Pavia, Italy, pp 181–187.

    Google Scholar 

  • Rice PJ, Anderson TA, Coats JR (2004) Effect of sediment on the fate of meto-lachlor and atrazine in surface water. Environ Toxicol Chem 23:1145–1155.

    Article  CAS  PubMed  Google Scholar 

  • Roberts TR (1974) The fate of WL63611 in a static aquatic system. In: Beran F (ed) Proceedings, European Weed Research Council, 4th International Symposium, Wasserunkraeuter Aquatic Weeds. Bundesanst Pflanzen, Vienna, pp 232–239.

    Google Scholar 

  • Rodgers JH Jr, Dickson KL, Saleh FY, Staoles CA (1983) Use of microcosms to study transport, transformation and fate of organics in aquatic systems. Environ Toxicol Chem 2:155–167.

    Article  CAS  Google Scholar 

  • Rönnefahrt I, Traub-Eberhard U, Kördel W, Stein B (1997) Comparison of the fate of isoproturon in small-and large-scale water/sediment systems. Chemosphere 35:181–189.

    Article  Google Scholar 

  • Rosenberg A (1984) 2,3,6-Trichlorophenylacetic acid (Fenac) degradation in aqueous and soil systems. Bull Environ Contam Toxicol 32:383–390.

    Article  CAS  PubMed  Google Scholar 

  • Salvestrini S, Coppola E, Capasso S (2004) Determination of the microscopic rate constants for the hydrolysis of diuron in soil/water mixture. Chemosphere 55:333–337.

    Article  CAS  PubMed  Google Scholar 

  • Sams¢e-Petersen L, Gustayson K, Madsen T, Mogensen B B, Lassen P, Skjemov K, Christoffersen K, Jorgensen E (2001) Fate and effects of esfenvalerate in agricultural ponds. Environ Toxicol Chem 20:1570–1578.

    Article  Google Scholar 

  • Scifres CJ, Allen TJ, Leinweber CL, Pearson KH (1973) Dissipation and phytotoxicity of dicamba residues in water. J Environ Qual 2:306–309.

    Article  CAS  Google Scholar 

  • Schäfers C, Hassink J (2000) Experimental simulation of fate in rivers: a mesocosm for studies with radiolabeled substances. In: Comejo J, Jamet P (eds) Pesticide/Soil Interactions. Institut National de la Recherche Agronomique, Paris, pp 389–395.

    Google Scholar 

  • Schaffner LC, Dickhut RM, Mitra S, Lay PW, Brouwer-Riel C (1997) Effects of physical chemistry and bioturbation by estuarine macrofauna on the transport of hydrophobic organic contaminants. Environ Sci Technol 31:3120–3125.

    Article  CAS  Google Scholar 

  • Schauerte W, Lay JP, Klein W, Korte F (1982) Long-term fate of organochlorine xenobiotics in aquatic ecosystems: Distribution, residual behaviour and metabolism of hexachlorobenzene, pentachloronitrobenzene and 4-chloroaniline in small experimental ponds. Ecotoxicol Environ Saf 6:560–569.

    Article  CAS  PubMed  Google Scholar 

  • Scholz K, Fritz R, Anderson C, Spiteller M (1988) Degradation of pesticides in an aquatic model ecosystem. Proceedings, BCPC Conference—Pests and Diseases. British Crop Protection Council, Brighton, UK, pp 149–158.

    Google Scholar 

  • SETAC (1995) Lynch MR (ed) Procedures for assessing the environmental fate and ecotoxicity of pesticides. Society of Environmental Toxicology and Chemistry (SETAC-Europe), Brussels.

    Google Scholar 

  • Sethunathan N (1973) Microbial degradation of insecticides in flooded soil and in anaerobic cultures. Residue Rev 47:143–165.

    Article  CAS  PubMed  Google Scholar 

  • Sethunathan N, MacRae IC (1969) Persistence and biodegradation of diazinon in submerged soils. J Agric Food Chem 17:221–225.

    Article  CAS  Google Scholar 

  • Setzo SY, Sundaram KMS (1982) Behaviour and degradation of chlorpyrifos-methyl in two aquatic models. J Agric Food Chem 30:1032–1035.

    Article  Google Scholar 

  • Setzo SY, MacCarthy HR, Oloffs PC, Shepherd RF (1979) The fate of acephate and carbaryl in water. J Environ Sci Health B14:635–654.

    Google Scholar 

  • Seybold CA, Mersie W, McName C, Tierney D (1999) Release of atrazine (14C) from two undisturbed submerged sediments over a two-year period. J Agric Food Chem 47:2156–2162.

    Article  CAS  PubMed  Google Scholar 

  • SFERM (2004) San Francisco Estuary Regional Monitoring Program Data. San Francisco Estuaary Institute, Oakland, CA. http://www.sfei.org/rmp/data.htm.

    Google Scholar 

  • Sharak Genthner BR, Price II AW, Pritchard PH (1989) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl Environ Microbiol 55:1466–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharom MS, Solomon KR (1981) Adsorption-desorption, degradation, and distri-bution of permethrin in aqueous systems. J Agric Food Chem 29:1122–1125.

    Article  CAS  Google Scholar 

  • Sijm RTHM, Hallen M, Schrap SM (1997) Influence of storage on sediment characteristics and of drying sediment on sorption coefficients of organic contaminants. Bull Environ Contam Toxicol 58:961–968.

    Article  CAS  PubMed  Google Scholar 

  • Singles SK, Dean GM, Kirkpatrick DM, Mayo BC, Langford-Pollard AD, Barefoot AC, Bramble FQ Jr (1999) Fate and behavior of flupyrsulfuron-methyl in soil and aquatic systems. Pestic Sci 55:288–300.

    Article  CAS  Google Scholar 

  • Site AD (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30:187–439.

    Article  CAS  Google Scholar 

  • Smalling KL, Aelion CM (2004) Distribution of atrazine into three chemical fractions: impact of sediment depth and organic carbon content. Environ Toxicol Chem 23:1164–1171.

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Mao J, Doane RA (1995) Metabolic fate of [14C]acrolein under aerobic and anaerobic aquatic conditions. J Agric Food Chem 43:2497–2503.

    Article  CAS  Google Scholar 

  • Södergren A (1984) Small-scale temporal changes in the biological and chemical composition of surface microlayers in a eutrophic lake. Verh Int Verein Limnol 22:765–771.

    Google Scholar 

  • Solomon KR, Yoo JY, Lean NK, Day KE, Stephenson GL (1986) Methoxychlor distribution, dissipation and effects in freshwater limnocorrals. Environ Toxicol Chem 5:577–586.

    Article  CAS  Google Scholar 

  • Sorensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J (2003) Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 45:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Southwood JM, Muir DCG, Mackay D (1999) Modelling agrochemical dissipation in surface microlayers following aerial depositions. Chemosphere 38:121–141.

    Article  CAS  PubMed  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555.

    Article  CAS  PubMed  Google Scholar 

  • Spiteller M, Klaus U, Pfeifer T (2002) Analysis of the binding ofamitrole and anilazine to aquatic and terrestrial refractory organic substances. In: Frimmel FH (ed) Refractory Organic Substances in the Environment. Wiley-VCH, Weinheim, pp 446–474.

    Chapter  Google Scholar 

  • Stamper DM, Tuovinen OH (1998) Biodegradation of the acetanilide herbicides alachlor, metolachlor and propachlor. Crit Rev Microbiol 24:1–22.

    Article  CAS  PubMed  Google Scholar 

  • Strek HJ (1998) Fate of chlorsulfuron in the environment. 1. Laboratory evaluations. Pestic Sci 53:29–51.

    Article  CAS  Google Scholar 

  • Stupp HP, Fahl U (2003) Environmental fate of clothianidin (TI-435; Poncho’). Pflanzenschutz-Nachrichten Bayer 56:59–74.

    CAS  Google Scholar 

  • Suedel BC, Rodgers JH Jr (1991) Variability of bottom sediment characteristics of the continental United States. Water Resour Bull 27:101–109.

    Article  CAS  Google Scholar 

  • Susarla S, El Hefnawy MM, Masunaga S, Yamashita N, Yonezawa Y, Salem Rizk MM, Urushigawa Y (1997) Anaerobic biotransformation of organochlorine pesticides in Manzala Lake Eygypt. Toxicol Environ Chem 62:149–160.

    Article  CAS  Google Scholar 

  • Tarr JB, Dyson JS, Chapman PF, Dark RJ (2002) Modeling pesticide transformation in soil and aquatic environments: Development of a common approach. In: Phelps W, Winton K, Effland WR (eds) Pesticide Environmental Fate. ACS Symposium Series 813. American Chemical Society, Washington, DC, pp 103–123.

    Chapter  Google Scholar 

  • Tejada AW, Varca LM, Calumpang SMF, Bajet CM, Medina MJB (1997) Fate of pesticides in a model rice paddy ecosystem. In: Proceedings of International Symposium on the Use of Nuclear and Related Techniques for Studying Environmental Behavior of Crop Protection Chemicals. International Atomic Energy Agency, Vienna, pp 265–278.

    Google Scholar 

  • The ARS Pesticide Properties Database. United States Department of Agriculture, Agricultural Research Service, Washington DC. http://www.ars.usda.gov/Services/docs.htm.

    Google Scholar 

  • Thibodeaux LJ, Valsaraj KT, Reible DD (2001) Bioturbation-driven transport of hydrophobic organic contaminants from bed sediment. Environ Eng Sci 18:215–223.

    Article  CAS  Google Scholar 

  • Thomas RG (1990) Volatilization from water. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of Chemical Property Estimation Methods. American Chemical Society, Washington DC, chap 15.

    Google Scholar 

  • Thurman EM (1985) In: Thurman EM (ed) Organic Geochemistry of Natural Waters. Nijhoff/Junk, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Tor JM, Xu C, Stucki JM, Wander MM, Sims GK (2000) Trifluralin degradation under microbiologically induced nitrate and Fe (III) reducing conditions. Environ Sci Technol 34:3148–3152.

    Article  CAS  Google Scholar 

  • Traub-Eberhard U, Schäfer H, Debus R (1994) New experimental approach to aquatic microcosm systems. Chemosphere 28:501–510.

    Article  Google Scholar 

  • Tuominen L, Kairesalo T, Hartikainen H (1994) Comparison of methods for inhibiting bacterial activity in sediment. Appl Environ Microbiol 60:3454–3457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • USEPA (1982) Aerobic aquatic metabolism studies. In: Pesticide assessment guidelines. Subdivision N, Chemistry, Environmental fate: 162–4. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1997) The incidence and severity of sediment contamination in surface waters of the United States. National Sediment Quality Survey, vol. EPA 823-R97–006. U.S. Environmental Protection Agency, Washington DC, vol 1.

    Google Scholar 

  • Valsaraj KT, Sojitra I (1997) Transport of hydrophobic organic compounds by colloids through porous media. 3. Diffusion from sediment porewater to overlying water in laboratory microcosms. Colloids Surfaces A Phys Eng Asp 121:125–133.

    Article  CAS  Google Scholar 

  • van der Kolk JWH, Crum SJH (1993) Laboratory micro-ecosystems as physical models for predicting the fate of pesticides in aquatic systems. Sci Total Environ Suppl:1429–1437.

    Google Scholar 

  • Van Rees KCJ, Sudicky EA, Rao PSC, Reddy KR (1991) Evaluation of laboratory techniques for measuring diffusion coefficients in sediments. Environ Sci Technol 25:1605–1611.

    Article  Google Scholar 

  • Van Veld PA, Spain JC (1983) Degradation of selected xenobiotic compounds in three types of aquatic test systems. Chemosphere 12:1291–1305.

    Article  Google Scholar 

  • Veith GD, Lee GF (1971) Water chemistry of toxaphene: role of lake sediments. Environ Sci Technol 5:230–234.

    Article  CAS  Google Scholar 

  • Vink JPM, van der Zee SEATM (1997) Effect of oxygen status on pesticide transformation and sorptions in undisturbed soil and lake sediments. Environ Toxicol Chem 16:608–616.

    Article  CAS  Google Scholar 

  • Voice TC, Weber WJ Jr (1983) Sorption of hydrophobic compounds by sediments, soils and suspended solids: I. Theory and background. Water Res 17:1433–1441.

    Article  CAS  Google Scholar 

  • Walker WW (1984) Development of a fate/toxicity screening test. EPA/600/4–84/074. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Walker WW, Cripe CR, Pritchard PH, Bourquin AW (1988) Biological and abiotic degradation of xenobiotic compounds in in-vitro estuarine water and sediment/water systems. Chemosphere 17:2225–2270.

    Article  Google Scholar 

  • Wandiga SO, Ongeri DMK, Mbuvi L, Lalah JO, Jumba IO (2002) Accumulation, distribution and metabolism of 14C-1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p’-DDT) residues in a model tropical marine ecosystem. Environ Technol 23:1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Wang YS, Hwang KL, Hsieh YN, Chen YL (1992) Fate of the herbicide naproanilide in a rice paddy model ecosystem. J Pestic Sci 17:161–167.

    Article  Google Scholar 

  • Walse SS, Pennington PL, Scott GI, Ferry JL (2004) The fate of fipronil in modular estuarine mesocosms. J Environ Monit 6:58–64.

    Article  CAS  PubMed  Google Scholar 

  • Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments: a review. Appl Geochem 18:159–194.

    Article  CAS  Google Scholar 

  • Weinberger P, Greenhalgh R, Moody RP, Boulton B (1982) Fate of fenitrothion in aquatic microcosms and the role of aquatic plants. Environ Sci Technol 16: 470–473.

    Article  CAS  Google Scholar 

  • Wijayaratne RD, Means JC (1984) Affinity of hydrophobic pollutants for natural estuarine colloids in aquatic environments. Environ Sci Technol 18:121–123.

    Article  CAS  PubMed  Google Scholar 

  • Willis GH, Wander RC, Southwick LM (1974) Degradation of trifluralin in soil suspensions as related to redox potential. J Environ Qual 3:262–265.

    Article  CAS  Google Scholar 

  • Wolfe NL, Macalady DL (1992) New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. J Contam Hydrol 9:17–34.

    Article  CAS  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DF, Baughman GL, Hollis RC (1977) Methoxychlor and DDT degradation in water: Rates and products. Environ Sci Technol 11:1077–1081.

    Article  CAS  Google Scholar 

  • Wolfe NL, Kitchens BE, Macalady DL, Grundl TJ (1986) Physical and chemical factors that influence the anaerobic degradation of methyl parathion in sediment systems. Environ Toxicol Chem 5:1019–1026.

    Article  CAS  Google Scholar 

  • Wolfe NL, Mingelgrin U, Miller GC (1990) Abiotic transformations in water, sediments and soil. In: Cheng HH (ed) Pesticides in the Soil Environment: Processes, Impacts, and Modeling. SSSA Book Series 2. Soil Science Society of America, Madison, WI, pp 103–168.

    Google Scholar 

  • Wolt JD, Nelson HP Jr, Cleveland CB, van Wesenbeeck IJ (2001) Biodegradation kinetics for pesticide exposure assessment. Rev Environ Contam Toxicol 169:123–164.

    CAS  PubMed  Google Scholar 

  • Wood M, Harold J, Johnson A, Hance R (1991) The potential for strazine degradation in aquifer sediments. BCPC Monograph. British Crop Protection Council, Brighton. Pestic Soil Water 47:175–182.

    CAS  Google Scholar 

  • Woodruff SL, House WA, Callow ME, Leadbeater BSC (1999a) The effects of biofilms on chemical processes in surficial sediments. Freshw Biol 41:73–89.

    Article  Google Scholar 

  • Woodruff SL, House WA, Callow ME, Leadbeater BSC (1999b) The effects of a developing biofilm on chemical changes across the sediment-ester interface in a freshwater environment. Int Rev Hydrobiol 84:509–532.

    CAS  Google Scholar 

  • Wu SC, Gschwend PM (1986) Sorption-kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20:717–725.

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wang Z, Zhang Y, Xu Y, Xu L, Wu W, Chen G (1994) Ecotoxicological study of fenpropathrin on some common Chinese aquatic organisms and evaluation of its effect on the aquatic ecosystem. EPA-600-R-94–138. Fish Physiology, Toxicology and Water Quality Management. U.S. Environmental Protection Agency, Washington, DC, pp 47–60.

    Google Scholar 

  • Ying GG, Williams B (2000) Laboratory study on the interaction between herbicides and sediments in water systems. Environ Pollut 107:399–405.

    Article  CAS  PubMed  Google Scholar 

  • Zablotowicz RM, Hoagland RE, Lee H, Alber T, Trevers JT, Hill JC, Locke MA (2000) Transformation of nitroaromatic pesticides and related xenobiotics by microorganisms and plants. In: Hill JC, Hoagland RE, Zablotowicz RM (eds) Pesticide Biotransformation in Plants and Microorganisms. Similarities and Divergences. ACS Symposium Series 777. American Chemical Society, Washington DC, pp 194–216.

    Chapter  Google Scholar 

  • Zanaradini E, Arnoldi A, Boschin G, D’Agostina A, Negri M, Sorlini C (2002) Degradation pathways of chlorsulfuron and metsulfuron-methyl by a Pseudomonas fluorescens strain. Ann Microbiol 52:25–37.

    Google Scholar 

  • Zaranyika MF, Nyandoro MG (1993) Degradation of glyphosate in the aquatic environment: an enzymatic kinetic model that takes into account microbial degradation of both free and colloidal (or sediment) particle adsorbed glyphosate. J Agric Food Chem 41:838–842.

    Article  CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF (1981) Effects of equilibration time on photoreactivity of the pollutant DDE sorbed on natural sediments. Chemosphere 10:453–460.

    Article  CAS  Google Scholar 

  • Zepp RG, Schlotzhauer PF (1983) Influence of algae on photolysis rates of chemicals in water. Environ Sci Technol 17:462–468.

    Article  CAS  PubMed  Google Scholar 

  • Zepp RG, Wolfe NL (1987) Abiotic transformation of organic chemicals at the particle-water interface. In: Stumm W (ed) Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. Wiley, New York, pp 423–455.

    Google Scholar 

  • Zhong C, Chen S, Carvalho FP, Zhao X (1998) A mini model ecosystem about the fate of labeled pesticides. Zhongshan Daxue Xuebao Ziran Kexueban 37:93–97.

    CAS  Google Scholar 

  • Zhou JL, Rowland S, Mantoura FC (1995) Partition of synthetic pyrethroid insec-ticides between dissolved and particulate phases. Water Res 29:1023–1031.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katagi, T. (2006). Behavior of Pesticides in Water—Sediment Systems. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 187. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1280-5_4

Download citation

Publish with us

Policies and ethics