Constant Flag Curvature Spaces and Akbar-Zadeh’s Theorem

  • D. Bao
  • S.-S. Chern
  • Z. Shen
Part of the Graduate Texts in Mathematics book series (GTM, volume 200)


In §3.9, we encountered the flag curvature. As the name suggests, this quantity (denoted K) involves a location x ϵ M, a flagpole ℓ:= with y ϵ T x M, and a transverse edge V ϵ T x M. The precise formula is quite elegantly given by (3.9.3):
$$K(\ell ,V): = \frac{{{V^i}({\ell ^j}{R_{jikl}}{\ell ^l}){V^k}}}{{g(\ell ,\ell )g(V,V) - {{[g(\ell ,V)]}^2}}} = \frac{{{V^i}{R_{ik}}{V^k}}}{{g(V,V) - {{[g(\ell ,V)]}^2}}}$$


Integral Curve Finsler Space Finsler Manifold Chern Connection Finsler Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AZ]
    H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), 281–322.MathSciNetMATHGoogle Scholar
  2. [Br1]
    R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Cont. Math. 196 (1996), 27–42.CrossRefGoogle Scholar
  3. [Br2]
    R. Bryant, Projectively flat Finsler 2-spheres of constant curvature, Selecta Mathematica, N.S. 3 (1997), 161–203.MATHCrossRefGoogle Scholar
  4. [Br3]
    R. Bryant, Finsler surfaces with prescribed curvature conditions, Aisenstadt Lectures, in preparation.Google Scholar
  5. [F1]
    P. Funk, Über zweidimensionale Finslersche Räume, insbesondere über solche mit geradlinigen Extremalen und positiver konstanter Krümmung, Math. Zeitschr. 40 (1936), 86–93.MathSciNetCrossRefGoogle Scholar
  6. [F2]
    P. Funk, Eine Kennzeichnung der zweidimensionalen elliptischen Geometric, Österreichische Akad. der Wiss. Math., Sitzungsberichte Abteilung II 172 (1963), 251–269.MathSciNetMATHGoogle Scholar
  7. [Gr]
    A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, 1998.Google Scholar
  8. [M5]
    M. Matsumoto, Randers spaces of constant curvature, Rep. on Math. Phys. 28 (1989), 249–261.MATHCrossRefGoogle Scholar
  9. [Num]
    S. Numata, On Landsberg spaces of scalar curvature, J. Korean Math. Soc. 12 (1975), 97–100.MathSciNetMATHGoogle Scholar
  10. [Ok]
    T. Okada, On models of projectively flat Finsler spaces of constant negative curvature, Tensor, N.S. 40 (1983), 117–124.MathSciNetMATHGoogle Scholar
  11. [On]
    B. O’Neill, Elementary Differential Geometry, 2nd ed., Academic Press, 1997.Google Scholar
  12. [Op]
    J. Oprea, Differential Geometry and its Applications, Prentice-Hall, 1997.Google Scholar
  13. [SK]
    C. Shibata and M. Kitayama, On Finsler spaces of constant positive curvature, Proceedings of the Romanian-Japanese Colloquium on Finsler Geometry, Braşov, 1984, pp. 139–156.Google Scholar
  14. [YS]
    H. Yasuda and H. Shimada, On Randers spaces of scalar curvature, Rep. on Math. Phys. 11 (1977), 347–360.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • D. Bao
    • 1
  • S.-S. Chern
    • 2
  • Z. Shen
    • 3
  1. 1.Department of MathematicsUniversity of HoustonUniversity Park, HoustonUSA
  2. 2.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Department of Mathematical SciencesIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations