Biomag 96 pp 237-240 | Cite as

Anatomically Constrained vs Unconstrained Dipole Fit in the Combination of MEG and MRI

  • J. Haueisen
  • M. Hajek
  • R. Huonker
  • H. Nowak
  • H. Sauer
Conference paper

Abstract

The most common Solution approach to the inverse problem in neuromagnetism is the anatomically unconstrained current dipole fit with Simplex, Levenberg-Marquardt or a similar method. The result of this dipole fit is not correlated to the anatomy (anatomically unconstrained) and might yield unexpected dipole locations e.g. in the white matter or the liquor space. In contrast, the combination of MEG (magnetoencephalography) and MRI (magnetic resonance imaging) allows an anatomically constrained dipole fit. This was suggested e.g. by Wieringaet al. [6]. Recently, Lütkenhöner et al. [3] proposed a dipole patch model, where a number of dipoles (a patch) are riding on the cortical surface. A simpler model is used in this work. The model consists of a single current dipole riding on a surface 1 mm below the cortical surface and is called anatomically constrained dipole fit. For all anatomically constrained dipole fits is valid that only dipole positions in the cortex and dipole directions perpendicular to the cortex surface are considered as valid source space.

Keywords

Schizophrenia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Huonker, H. Nowak, M. Hajek, U. Leder, K. Wegner, R. Rzanny, and K. Rieke. 3D-Imaging biomagnetischer Quellen. Biomedizinische Technik, 40 (Ergänzungsband 1): 193–194, 1995.Google Scholar
  2. [2]
    R. Huonker, H. Nowak, R. Rzanny, and K. Rieke. Combined 3D neuromagnetic source imaging and mri scans. EEG Journal, suppl.: Visualization of information processing in the human brain: Recent Advances in MEG and functional MRI, in press.Google Scholar
  3. [3]
    B. Lütkenhöner, E. Menninghaus, 0. Steinsträter, C. Wienbruch, H.M. Gißler, and T. Elbert. Neuromagnetic source analysis using magnetic resonance images for the construction of the source and the volume conductor model. Brain Topography, 7 (4): 291–299, 1995.CrossRefGoogle Scholar
  4. [4]
    M. Reite. Magnetoencephalography in the study of mental illness. Adv. Neurol., 54: 207–222, 1990.Google Scholar
  5. [5]
    T.E. Schlaepfer, G.J. Harris, A.Y. Tien, L.W. Peng, S. Lee, E.B. Fereman, G.A. Chase, P.E. Barta, and G.D. Pearlson. Decreased regional cortical gray matter volume in schizophrenia. Am. J. Psychiatry, 151 (6): 842–848, 1994.Google Scholar
  6. [6]
    H. J. Wieringa, M. J. Peters, and F.H. Lopes da Silva. The estimation ofa realistic localization of dipole layers within the brain based on functional (EEG, MEG) and structural (MRI) data: A preliminary note. Brain Topography, 5 (4): 327–330, 1993.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. Haueisen
    • 1
  • M. Hajek
    • 2
  • R. Huonker
    • 1
  • H. Nowak
    • 1
  • H. Sauer
    • 2
  1. 1.Biomagnetisches ZentrumJenaGermany
  2. 2.Klinik für PsychiatrieFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations