Advertisement

Solitons pp 131-135 | Cite as

Deformed Skyrmions

  • L. Marleau
Conference paper
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The spherically symmetric hedgehog ansatz used in the description of the Skyrmion is believed to be inadequate for the rotational states such as the nucleon (I = J = 1/2) and the Δ (I = J = 3/2) due to centrifugal forces. We study here a simple alternative: an oblate spheroidal solution which leads to lower masses for these baryons. As one might expect, the shape of the solution flattens as one increases I = J regardless if the size of the soliton is allowed to change or not.

Keywords

Rotational State Rotational Energy Collective Variable Skyrme Model Quadrupole Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. R. Skyrme, Proc. R. Soc. London Sec. A 260 (1961), 127.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    J. P. Blaizot and G. Ripka, Phys. Rev. D 38 (1988), 1556; B. A. Li, K. F. Liu, and M. M. Zhang, Phys. Rev. D 35 (1987), 1693; J. Wambach, H. W. Wyld, and H. M. Sommermann, Phys. Lett. B 186 (1987), 272.ADSGoogle Scholar
  3. 3.
    C. Hajduk and B. Schwesinger, Phys. Lett. B 40 (1984), 172; Phys. Lett. B 145 (1984), 171; Nuclear Phys. A 453 (1986), 620.Google Scholar
  4. 4.
    L. C. Biedenharn, Y. Dothan, and M. Tarlini, Phys. Rev. D 31 (1985), 649; E. Braaten and J. P. Ralston, Phys. Rev. D 31 (1985), 598; K. F. Liu, J. S. Zhang, and G. R. E. Black, Phys. Rev. D 30 (1984), 2015; K. F. Liu, J. S. Zhang, and G. R. E. Black, Phys. Rev. D 30 (1984), 2015; B. J. Schroers, Z. Phys. C 61(1994), 479; N. Dorey, J. Hughes, and M. P. Mattis, Phys. Rev. D 50 (1994), 5816.ADSGoogle Scholar
  5. 5.
    G. S. Adkins, C. R. Nappi, and E. Witten, Nuclear Phys. B 228 (1983), 552.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • L. Marleau

There are no affiliations available

Personalised recommendations