Skip to main content

The Limits of Hamiltonian Structures in Three-Dimensional Elasticity, Shells, and Rods

  • Conference paper
Mechanics: From Theory to Computation
  • 406 Accesses

Summary

This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure.

The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model.

We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.

This paper is dedicated to the memory of Juan-Carlos Simo

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abresch, U. [ 1987 ] Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math.374, 169–192.

    MathSciNet  MATH  Google Scholar 

  • Antman, S. S. [ 1972 ], The theory of rods, Handbuch der Physik, Band VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 641–703.

    Google Scholar 

  • Antman, S. S. [ 1995 ], Nonlinear Problems of Elasticity, Applied Mathematical Sciences, 107, Springer-Verlag, New York.

    Google Scholar 

  • Antman, S. S. and W. H. Warner [ 1967 ] Dynamical theory of hyperelastic rods. Arch. Ratl. Mech. Anal.23, 135–162.

    MathSciNet  Google Scholar 

  • Caflisch, R. and J. H. Maddocks [ 1984 ] Nonlinear dynamical theory of the elastica. Proc. R. Soc. Edin.99A, 1–23.

    Article  MathSciNet  Google Scholar 

  • Camassa, R. and D. Holm [ 1993 ] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661–1664.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ciarlet, P. G. [ 1980 ], A justification of the von Kármán equations. Arch. Ratl. Mech. Anal.73, 349–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. [ 1994 ] Mathematical shell theory: recent developments and open problems, in Duration and Change: Fifty years at Oberwolfach, M. Artin, H. Kraft, and R. Remmert, eds., Springer-Verlag, New York, 159–176.

    Google Scholar 

  • Ciarlet, P. G. and V. Lods [ 1994 ] Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter. C. R. Acad. Sci. Paris319 299–304.

    MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G., V. Lods, and B. Miara [1994] Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”. C. R. Acad. Sci. Paris 319, 95–100, 1994.

    Google Scholar 

  • Ciarlet, P. G. and B. Miara [ 1992 ], Two dimensional shallow shell equations. Comm. Pure Appl.Math. XLV, 327–360.

    Article  MathSciNet  Google Scholar 

  • Destuynder, P. [ 1985 ], A classification of thin shell theories. Acta Appl. Math.4, 15–63.

    Article  MathSciNet  MATH  Google Scholar 

  • do Carmo, M. [ 1976 ], Differential Geometry of Curves and Surfaces, Prentice-Hall. Englewood Cliffs, N.J.

    MATH  Google Scholar 

  • Foltinek, K. [ 1994 ] The Hamilton theory of elastica. Amer J. Math. 116, 1479–1488.

    Article  MathSciNet  MATH  Google Scholar 

  • Fox, D., A. Raoult, and J.-C. Simo [ 1992 ] Modèles asymptotiques invariants pour des structures minces élastiques. C.R. Acad. Sci. Paris 315, 235–240.

    MathSciNet  MATH  Google Scholar 

  • Fox, D., A. Raoult, and J.-C. Simo [ 1993 ] A justification of nonlinear properly invariant plate theories. Arch. Ratl. Mech. Anal. 124, 157–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Ge, Z. [1991] Equivariant symplectic difference schemes and generating functions, Physica D 49 376–386.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ge, Z., H. P. Kruse, J. E. Marsden and C. Scovel [ 1995 ] Poisson Brackets in the Shallow Water Approximation. Canad. Appl. Math. Quart. 3, 277–302.

    MathSciNet  MATH  Google Scholar 

  • Ge, Z. and J. E. Marsden [ 1988 ] Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A 133, 134–139.

    Article  MathSciNet  ADS  Google Scholar 

  • Ge, Z. and C. Scovel [ 1994 ] A Hamiltonian truncation of the shallow water equation. Lett. Math. Phys. 31, 1–13.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • John, F. [ 1971 ], Refined interior equations for the elastic shells. Comm. Pure Appl. Math. 24, 584–675.

    Article  Google Scholar 

  • Kato, T. [ 1985 ] Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane, Scuola Normale Superiore, Accademia Nazionale dei Lincei.

    Google Scholar 

  • Koiter, W. T. [ 1970 ], On the foundation of the linear theory of thin elastic shells. Proc. Kon. Nederl. Akad. Wetensch. B69, 1–54.

    MathSciNet  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz [1959], Theory of Elasticity, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Langer, J. and R. Perline [1991] Poisson geometry of the filament equation. J. Nonlin. Sci.,1,71–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Le Dret, H. and A. Raoult [ 1995 ] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pure Appl. 74, 549–578.

    MATH  Google Scholar 

  • Love, A. E. H. [ 1944 ] A Treatise on the Mathematical Theory of Elasticity. Dover, New York.

    MATH  Google Scholar 

  • Maddocks, J. [ 1984 ] Stability of nonlinearly elastic rods. Arch. Rail. Mech. Anal. 85, 311–354.

    MathSciNet  MATH  Google Scholar 

  • Maddocks, J. [ 1991 ] On the stability of relative equilibria. IMA J. Appl. Math. 46, 71–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J. E. and T. J. R. Hughes [1994] Mathematical Foundations of Elasticity. Dover, New York; reprint of [ 1983 ] Prentice-Hall edition.

    Google Scholar 

  • Marsden, J. E., T. S. Ratiu, and G. Raugel [ 1995 ] Equations d’Euler dans une coque sphérique mince (The Euler equations in a thin spherical shell), C. R. Acad. Sci. Paris 321, 1201–1206.

    MathSciNet  MATH  Google Scholar 

  • Mielke, A. and P. Holmes [ 1988 ] Spatially complex equilibria of buckled rods. Arch. Ratl. Mech.Anal., 101, 319–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Naghdi, P. [ 1972 ], The theory of shells and plates. Handbuch der PhysikBand VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 425–640.

    Google Scholar 

  • Shi, Y. and J. E. Hearst [ 1994 ] The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 101, 5186–5200.

    Article  ADS  Google Scholar 

  • Simo, J.-C., M. S. Rifai, and D. D. Fox [ 1992 ], On a stress resultant geometrically exact shell models. Part VI: Conserving algorithms for nonlinear dynamics. Comp. Meth. Appl. Mech. Eng. 34, 117–164.

    MathSciNet  MATH  Google Scholar 

  • Simo, J.-C., J. E. Marsden, and P. S. Krishnaprasad [ 1988 ] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates, Arch. Ratl. Mech. Anal. 104, 125–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.-C., T. A. Posbergh, and J. E. Marsden [ 1990 ] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method, Phys. Rep. 193, 280–360.

    Article  MathSciNet  ADS  Google Scholar 

  • Simo, J.-C., T. A. Posbergh, and J. E. Marsden [ 1991 ] Stability of relative equilibria II: Three dimensional elasticity, Arch. Rail. Mech. Anal. 115, 61–100.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Ge, Z., Kruse, H.P., Marsden, J.E. (2000). The Limits of Hamiltonian Structures in Three-Dimensional Elasticity, Shells, and Rods. In: Mechanics: From Theory to Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1246-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1246-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7059-1

  • Online ISBN: 978-1-4612-1246-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics