Advertisement

Problems and Progress in Microswimming

  • J. Koiller
  • K. Ehlers
  • R. Montgomery
Conference paper

Summary

Stokesian swimming is a geometric exercise, a collective game. In Part I, we review Shapere and Wilczek’s gauge-theoretical approach for a single organism. We estimate the speeds of organisms moving by propagating small amplitude waves, and we make a conjecture regarding a new inequality for the Stokes’ curvature. In Part II, we extend the gauge theory to collective motions. We advocate the influx of nonlinear control theory and subriemannian geometry. Computationally, parallel algorithms are natural, each microorganism representing a separate processor. In the final section, open questions motivated by biology are presented.

Key words

Stokes’ flows geometric phases nonholonomic control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abraham, R. and Marsden, J. E.: Foundations of Mechanics, Addison-Wesley, Reading, MA (1978).MATHGoogle Scholar
  2. [2]
    Ambrose, W. and Singer, I. M.: A theorem on holonomy, Trans. AMS 75, 428–453 (1953).MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Arnold, V., Kozlov, V. V., and Neishtadt, A. I.: Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Springer—Verlag, New York (1988).Google Scholar
  4. [4]
    Berg, H.C.: Random Walks in Biology, expanded edition, Princeton University Press, Princeton, NJ (1993).Google Scholar
  5. [5]
    Berg, H. C. and Anderson, R. A.: Bacteria swim by rotating their flagellar filaments, Nature 245, 380–384 (1973).ADSCrossRefGoogle Scholar
  6. [6]
    Berg, H. C. and Purcell. E. M.: Physics of chemoreception. Biophys. J. 20, 193–219 (1977).CrossRefGoogle Scholar
  7. [7]
    Berg, H. C.: Physics of bacterial chemotaxis. pp. 19–30 in Sensory Perception and Transduction in Aneural Organisms, eds. Colombetti, G., Lenci, F., and Song. P. S., Plenum, New York (1985).CrossRefGoogle Scholar
  8. [8]
    Berg,H.C.: Studies of motile bacteria. In Physics News, ed. by Schewe, P. F.. American Institute of Physics, New York (1991).Google Scholar
  9. [9]
    Berg, H. C.: Dynamic properties of bacterial flagellar motors. Nature 249 77–79 (1974).Google Scholar
  10. [10]
    Berg, H. C. and Khan, S.: A model for the flagellar rotary motor. In Mobility and Recognition in Cell Biology, pp. 485–497,eds. Sund, H. and Veeger, C., deGruyter, Berlin (1983).Google Scholar
  11. [11]
    Berg, H. C., Manson, M. D., and Conley, M. P.: Dynamics and energetics of flagellar rotation in bacteria, Symp. Soc. Exp. Biol.35, 1 – 31 (1982).Google Scholar
  12. [12]
    Berg, H. C.: Dynamics and energetics of the bacterial rotary motor. In Protein Dynamics and Energy Transduction, pp. 312–344, ed. Ishiwata, S.-I., Taniguchi Foundation (1980).Google Scholar
  13. [13]
    Berg, H.C.: Torque generation by the flagellar rotary motor, Biophys. J. 68, 163s-167s (1995).ADSGoogle Scholar
  14. [14]
    Berg, H. C.: How to track bacteria, Rev. Sci. Instrum. 42, 868 – 871 (1971).ADSCrossRefGoogle Scholar
  15. [15]
    Blake, J. R.: Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number, Bull. Austral. Math. Soc. 3 255–264 (1971).Google Scholar
  16. [16]
    Blake, J. R.: A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 – 208 (1971).ADSMATHCrossRefGoogle Scholar
  17. [17]
    Blake, J. R.: A model for the micro—structure in ciliated organisms, J. Fluid Mech. 55, 1 – 23 (1972).ADSMATHCrossRefGoogle Scholar
  18. [18]
    Brennen, C.: An oscillating boundary layer theory for ciliary propulsion, J. Fluid Mech. 65, 799 – 824 (1974).ADSMATHCrossRefGoogle Scholar
  19. [19]
    Brennen. C. and Winnet, H.: Fluid mechanics of propulsion by cilia and flagella, Ann. Rev. Fluid Mech. 9, 339 – 398 (1977).ADSCrossRefGoogle Scholar
  20. [20]
    Brockett, R. W. and Dai, L: Non-holonomic kinematics and the role of elliptic functions in constructive controllability, in Nonholonomic Motion Planning, eds. Li, Z., Canny. J. F., Kluwer, Dordrecht (1993).Google Scholar
  21. [21]
    Budrene, E. O. and Berg, H. C.: Complex patterns formed by motile cells of Escherichia coli, Nature 349, 630 – 633 (1991).ADSCrossRefGoogle Scholar
  22. [22]
    Budrene,E.O.and Berg,H.C.: Dynamics of formation of symmetrical patterns of chemotactic bacteria.Nature 376, 49–53 (6 July 1995).ADSCrossRefGoogle Scholar
  23. [23]
    Calleja, G. B.: Microbial Aggregation, CRC Press, Boca Raton, FL (1984).Google Scholar
  24. [24]
    Childress, S.: Mechanics of Swimming and Flying, Cambridge University Press (1981).MATHCrossRefGoogle Scholar
  25. [25]
    Chow, W. L.: Uber systeme van linearen partiellen differentialgleichungen ersten ordnung, Math. Ann. 117, 98 – 105 (1939).MathSciNetCrossRefGoogle Scholar
  26. [26]
    Chwang, A. T. and Wu, T. Y.: A note on the helical movement of micro-organisms, Proc. Roy. Soc. Lond. B. 178, 327 – 346 (1971).ADSCrossRefGoogle Scholar
  27. [27]
    Curtis, H.: The Marvelous Animals: An Introduction to the Protozoa, The Natural History Press, New York (1968).Google Scholar
  28. [28]
    Ehlers, K. M.: The Geometry of Swimming and Pumping at Low Reynolds Number, Ph.D. Thesis, University of California, Santa Cruz (1995).Google Scholar
  29. [29]
    Ehlers. K. M, Berg, H. C., and Montgomery, R.: Do synechococcus swim using traveling surface waves?, Proc. Natl. Acad. Sci. USA 93,8340–8344 (1996).ADSCrossRefGoogle Scholar
  30. [30]
    England, H.: Complex Variable Methods in Elasticity, Wiley-Interscience, New York (1971).MATHGoogle Scholar
  31. [31]
    Fauci, L. J.: Computational modeling of the swimming of biflagellated algal cells, in Contemp. Math, 141, 91–102, ed. A. Y. Cheer, C. P. van Dam (1993).Google Scholar
  32. [32]
    Farina, M., Esquivel, D. M. S., and Lins de Barros, H. G. P.: Magnetic iron—sulphur crystals from a magnetotactic microorganism, Nature 343, 6255, 256 - 258 (1990).ADSCrossRefGoogle Scholar
  33. [33]
    Fearing, R. S.: Control of a micro—organism as a prototype micro—robot, Second Int. Symp. on Micromachines and Human Sciences, Nagoya, Japan, 1991. Google Scholar
  34. [34]
    Flam, F.: Swarms of mini-robots set to take on Mars terrain, Science 257, 1621, (18 Sept. 1992 ).Google Scholar
  35. [35]
    Greenbaum, A., Greengard, L., and Mayo, A.: On the numerical solution of the biharmonic equation on the plane, Physica D60 (1–4), 216–225 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  36. [36]
    Guell, D. C., Brenner, H., Frankel, R. B., and Hartman, H.: Hydrodynamic forces and band formation in swimming magnetotactic bacteria, J. Theor.: Biol. 135, 525 – 542 (1988).CrossRefGoogle Scholar
  37. [37]
    Guichardet, A.: On rotation and vibration motions of molecules, Ann. Inst. H. Poincaré, Phys. Theor. 40(3), 329 – 342 (1984).MathSciNetMATHGoogle Scholar
  38. [38]
    Guillemin, V. and Sternberg, S.: Geometric Asyniptotics, American Mathematical Society, Providence, RI (1977).Google Scholar
  39. [39]
    Hasimoto, H. and Sano, H.: Stokeslets and eddies in creeping flow, Ann. Rev. Fluid Mech. 12, 335 – 364 (1980).MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    Happel, J. and Brenner, H.: Low Reynolds Number Hydrodynamics, Kluwer Academic, Dordrecht (1991).Google Scholar
  41. [41]
    Higdon, J. J. L.: The generation of feeding currents by flagellar motions, J. Fluid Mech. 94(2), 305 – 330 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  42. [42]
    Hirsch, P.: Microcolony formation and consortia, in Microbial Adhesion and Aggregation, ed. K. C. Marshall, pp. 373–393, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  43. [43]
    Ishihara, A., Segall, J. E., Block, S. M., and Berg, H. C.: Coordination of flagella on filamentous cells of Escherichia coli, J. Bacterial. 155, 228 – 237 (1983).Google Scholar
  44. [44]
    Jahn, T. L., and Bovee, E. C.: Motile behavior of Protozoa, in Research in Protozoology, ed. Tze—Tuan Chen, vol. L, Pergamon, New York (1967).Google Scholar
  45. [45]
    Jones, R. D., Lemanski, C., and Jones, T. J.: Theory of attachment in Giardia, Biophvs. J. 44, 185 – 190 (1983).ADSCrossRefGoogle Scholar
  46. [46]
    Jahn, T. L. and Votta, J. J.: Locomotion of protozoa, Ann. Rev. Fluid Mech. 4, 93 – 116 (1972).ADSCrossRefGoogle Scholar
  47. [47]
    Khan, S., Meister, M., and Berg, H. C.: Constraints on flagellar rotation, J. Mol. Biol. 184, 645 – 656 (1985).CrossRefGoogle Scholar
  48. [48]
    Koehl, M. A. R.: Feeding at low Reynolds number by Copepods, Lect. Math. Life Sciences 14, 89 – 117 (1981).Google Scholar
  49. [49]
    Koehl, M. A. R.: Hairy little legs: feeding, smelling and swimming at low Reynolds numbers, in Contemp. Math. 141, 33–64, Fluid dynamics in biology, eds. Cheer, A. Y., van Dam, C. P. (1993).Google Scholar
  50. [50]
    Keller, S. T. and Wu, T. Y.: A porous prolate—spheroidal model for ciliated micro—organisms, J. Fluid Mech. 80(2), 259 – 278 (1977).ADSMATHCrossRefGoogle Scholar
  51. [51]
    Lapidus, R. and Berg, H. C.: Gliding motility of Cytophaga sp.Strain U67, J. Bacteriology 151(1), 384 – 398 (1982).Google Scholar
  52. [52]
    Lins de Barros, H. G. P., Esquivel, D. M. S., and Farina, M.: Magnetotaxis, Sci. Progress Oxford 74, 347 – 359 (1990).Google Scholar
  53. [53]
    Li, Z. and Canny, J. F. (eds.): Nonholonomic Motion Planning, Kluwer, Dordrecht (1993).Google Scholar
  54. [54]
    Lighthill, J.: Biofluiddynamics: A survey, Contemp. Math. 141 1–23 (1993). eds. Cheer, A. Y., van Dam, C. P.Google Scholar
  55. [55]
    Lighthill, L.: Mathematical Biofluidmechanics, SIAM (1975).Google Scholar
  56. [56]
    Lowe, G., Meister, M., and Berg, H. C.: Rapid rotation of flagellar bundles in swimming bacteria, Nature 325, 637 – 640 (1987).ADSCrossRefGoogle Scholar
  57. [57]
    Ludwig, W.: Zur theorie der flimmerbewegung (dynamik, nutzeffekt, energiebilanz), Z. vergl. Physiol. 13, 397 – 504 (1930).Google Scholar
  58. [58]
    Manson, M. D., Tedesco, P. M. and Berg, H. C.: Energetics of flagellar rotation in bacteria, J. Mol. Biol. 138, 541 – 561 (1980).CrossRefGoogle Scholar
  59. [59]
    Marden,J. H. and Kramer, M. G.: Locomotor performance of insects with rudimentary wings, Nature 377, 332–334 (28 Sept. 1995 ).ADSCrossRefGoogle Scholar
  60. [60]
    Meister, M., Lowe, G., and Berg, H.C.: The proton flux through the bacterial flagellar motor, Cell 49, 643 – 650 (1987).CrossRefGoogle Scholar
  61. [61]
    Meister, M. and Berg, H. C.: The stall torque of the bacterial flagellar motor, Biophvs. J.52, 413–419 (1987).ADSCrossRefGoogle Scholar
  62. [62]
    Montgomery, R.: Gauge theory of the falling cat, Fields Institute Communications 1, 193 – 218 (1993).Google Scholar
  63. [63]
    Montgomery, R.: Isoholonomic problems and some applications, Commun. Math. Phys. 128, 565–592 (1990).Google Scholar
  64. [64]
    Montgomery, R.: Nonholonomic control and gauge theory, in Nonholonomic Motion Planning, eds. Li, Z., Canny, J. F., Kluwer, Dordrecht (1993).Google Scholar
  65. [65]
    Murray, R. M. and Sastry, S. S.: Steering nonholonomic control systems using sinusoids, in Nonholonomic Motion Planning, ed. Li, Z., Canny, J. F., Kluwer, Dordrecht (1993).Google Scholar
  66. [66]
    Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Groningen, Holland (1953).MATHGoogle Scholar
  67. [67]
    Nisbet, B.: Nutrition and Feeding Strategies in Protozoa, Croom Helm, London and Camberra (1984).Google Scholar
  68. [68]
    Nogueira, F. S. and Lins de Barros, H. G. P.: Study on the motion of magnetotactic bacteria, Eue Biophys. J. 24, 13 – 21 (1995).CrossRefGoogle Scholar
  69. [69]
    Peskin, C. S., McQueen, D. M.: Computational biofluid dynamics, in Contemp. Math. 141, 161–186, ed. Cheer, A. Y., van Dam, C. R. (1993).Google Scholar
  70. [70]
    Pedley, T. J. and Kessler, J. O.: Hydrodynamic phenomena in suspensions of swimming microorganisms, Ann. Rev. Fluid Mech. 24, 313 – 358 (1992).MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    Purcell, E.: Life at low Reynolds number, Am. J. Phys. 45, 3 – 11 (1977).ADSCrossRefGoogle Scholar
  72. [72]
    Ramia, M., Tullock, D. L., and Phan-Thien, N.: The role of hydrodynamic interaction in the locomotion of microorganisms, Biophys. J. 65, 755 – 778 (1993).ADSCrossRefGoogle Scholar
  73. [73]
    Ramia, M. and Swan, M. A.: The swimming of unipolar cells of spirillum volutans: Theory and observations, J. Exp. Biol. 187, 75 – 100 (1994).Google Scholar
  74. [74]
    Saier, M. H. and Jacobson, G. R.: The Molecular Basis of Sex and Differentiation, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  75. [75]
    Shapere, A. and Wilczek, F.: Geometry of self—propulsion at low Reynolds number, J. Fluid Mech. 198, 557 – 585 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  76. [76]
    Shapere, A.: Gauge Theory of Deformable Bodies: A Theory of Something, Ph.D. thesis, Princeton University Physics Dept., Princeton, NJ (1989).Google Scholar
  77. [77]
    Sizemore, D. R., Branstrom, A., and Sadoff, J. C.: Attenuatd Shigella as a DNA delivery vehicle for DNA-mediated immunization, Science 270, 299–302 (13 October 1995 ).Google Scholar
  78. [78]
    Spormann, A. M.: Unusual swimming behavior of a magnetotactic bacterium, FEMS Microb. Ecol. 45, 37 – 45 (1987).CrossRefGoogle Scholar
  79. [79]
    Taylor, G.I.: Analysis of the swimming of microscopic organisms, Proc. Roy. Soc. Lond. A 209, 447 – 461 (1951).ADSMATHCrossRefGoogle Scholar
  80. [80]
    Taylor, G. I.: The action of waving cylindrical tails in propelling microscopic organisms, Proc. Roy. Soc. Lond. A 211, 225 – 239 (1952).ADSMATHCrossRefGoogle Scholar
  81. [81]
    Yates, G.: How microorganisms move through water, Am. Sci. 74, 358 – 365 (1986).ADSGoogle Scholar
  82. [82]
    Woodward, D. E., Tyson, R., Myerscough, M. R., Murray, J. D., Budrene, E. O., and Berg, H. C.: Spatio-temporal patterns generated by Salmonella typhimurium, Biophys. J. 682181–2189 (1995).ADSCrossRefGoogle Scholar
  83. [83]
    Weinbaum, S. and Ganatos, P.: Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22, 275 –316, 1990.MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    Wu, T. Y., Brennen, C., and Brokaw, C. (eds.): Swimming and Flying in Nature, vol. 1, Plenum, New York (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • J. Koiller
    • 1
  • K. Ehlers
    • 2
  • R. Montgomery
    • 2
  1. 1.Laboratόrio Nacional de Computacão CientíficaRio de JaneiroBrazil
  2. 2.Mathematics DepartmentUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations