Skip to main content

Benthic Respiration in Aquatic Sediments

  • Chapter
Methods in Ecosystem Science

Abstract

Sediments make up an important compartment in the energy flow of aquatic ecosystems. On the continental shelves, 10 to 50% of the primary production reaches the sea-floor, most of which is mineralized there (Suess 1980; Wollast 1991; Canfield 1993). Through the balance between retention and release of nutrients, benthic mineralization influences the nutrient dynamics of the ecosystem (e.g., Howarth 1988), and through their regulatory effect on the burial of residual carbon and associated nutrients, mineralization processes may also affect the global cycles of these elements (Canfield 1994; Hedges and Keil 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aller, R.C. Bioturbation and manganese cycling in hemipelagic sediments. Philos. Trans. R. Soc. Lond. A331:51–58; 1990.

    Google Scholar 

  • Aller, R.C. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. J. Mar. Res. 52:259–295; 1994.

    CAS  Google Scholar 

  • Aller, R.C.; Blair, N.E.; Xia, Q.; Rude, P.D. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Res. 16:753–786; 1996.

    Google Scholar 

  • Aller, R.C.; Mackin, J.E. Open-incubation, diffusion methods for measuring solute reaction rates in sediments. J. Mar. Res. 47:411–440; 1989.

    CAS  Google Scholar 

  • Aller, R.C.; Rude, P.D. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52:751–765; 1988.

    CAS  Google Scholar 

  • Anderson, L.A.; Sarmiento, J.L. Redfield ratios of re-mineralization determined by nutrient data analysis. Global Biogeochem. Cycl. 8:25–35; 1994.

    Google Scholar 

  • Anderson, L.G.; Hall, P.O.J.; Iverfeldt, Å.; Rutgers van der Loeff, M.M.; Sundby, B.; Westerlund, S.F.G. Benthic respiration measured by total carbonate production. Limnol. Oceanogr. 31:319–329; 1986.

    CAS  Google Scholar 

  • Bak, F.; Pfennig, N. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. 85:31–42; 1991.

    CAS  Google Scholar 

  • Balzer, W. On the distribution of iron and manganese at the sediment/water interface: Thermodynamic versus kinetic control. Geochim. Cosmochim. Acta 46:1153–1161; 1982.

    CAS  Google Scholar 

  • Bender, M.L.; Heggie, D.T. Fate of organic carbon reaching the deep-sea floor: A status report. Geochim. Cosmochim. Acta 48:977–986; 1984.

    CAS  Google Scholar 

  • Berelson, W.M.; Hammond, D.E.; Johnson, K.S. Benthic fluxes and the cycling of biogenic silica and carbon in two southern California borderland basins. Geochim. Cosmochim. Acta 51:1345–1363; 1987.

    CAS  Google Scholar 

  • Berner, R.A. Early Diagenesis. Princeton, NJ: Princeton Univ. Pr.; 1980.

    Google Scholar 

  • Binnerup, S.J.; Jensen, K.; Revsbech, N.P.; Jensen, M.H.; Sorensen, J. Denitrification, dissimilatory reduction of nitrate to ammonium and nitrification in a bioturbated estuarine sediment as measured with 15N and micro-sensor techniques. Appl. Environ. Microbiol. 58:303–313; 1992.

    PubMed  CAS  Google Scholar 

  • Blackburn, T.H. Nitrogen gas flux from sediments: Insights from simulation modelling. Aquat. Microb. Ecol. 10:209–211; 1996.

    Google Scholar 

  • Blair, N.E.; Levin, L.A.; DeMaster, D.J.; Plaia, G. The short-term fate of fresh algal carbon in continental slope sediments. Limnol. Oceanogr. 41:1208–1219; 1996.

    CAS  Google Scholar 

  • Boudreau, B.P. Diagenetic Models and Their Implementation. Berlin: Springer-Verlag; 1997.

    Google Scholar 

  • Boudreau, B.P.; Guinasso, N.L., Jr. The influence of a diffusive sublayer on accretion, dissolution, and diagenesis at the sea floor. In: Fanning, K.A.; Manheim, F.T., eds. The dynamic environment at the ocean floor. Lanham, MD: Lexington; 1982:115–145.

    Google Scholar 

  • Brandes, J.A.; Devol, A.H. Simultaneous nitrate and oxygen respiration in coastal sediments: Evidence for discrete diagenesis. J. Mar. Res. 53:771–797; 1995.

    CAS  Google Scholar 

  • Brendel, P.J.; Luther, G.W., III. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in pore-waters of marine and freshwater sediments. Environ. Sci. Technol. 29:751–761; 1995.

    PubMed  CAS  Google Scholar 

  • Buchholtz-ten Brink, M.R.; Gust, G.; Chavis, D. Calibration and performance of a stirred benthic chamber. Deep-Sea Res. 36:1083–1101; 1989.

    CAS  Google Scholar 

  • Burdige, D.J.; Dhakar, S.P.; Nealson, K.H. Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol. J. 10:27–48; 1992.

    CAS  Google Scholar 

  • Canfield, D.E. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53:619–632; 1989.

    PubMed  CAS  Google Scholar 

  • Canfield, D.E. Sulfate reduction in deep-sea sediments. Am. J. Sci. 291:177–188; 1991.

    PubMed  CAS  Google Scholar 

  • Canfield, D.E. Organic matter oxidation in marine sediments. In: Wollast, R.; Mackenzie, F.T.; Chou, L., eds. Interactions of C, N, P, and S Biogeochemical Cycles and Global Change. Berlin: Springer-Verlag; 1993:333–363.

    Google Scholar 

  • Canfield, D.E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 115:315–329; 1994.

    Google Scholar 

  • Canfield, D.E.; Des Marais, D.J. Aerobic sulfate reduction in microbial mats. Science 251:1471-1473; 1991.

    Google Scholar 

  • Canfield, D.E.; Des Marais, D.J. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57:3971-3984; 1993.

    Google Scholar 

  • Canfield, D.E.; Jørgensen, B.B.; Fossing, H.; Glud, R.; Gundersen, J.; Ramsing, N.B.; Thamdrup, B.; Hansen, J.W.; Nielsen, L.P.; Hall, P.O.J. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113:27–40; 1993a.

    PubMed  CAS  Google Scholar 

  • Canfield, D.E.; Raiswell, R. Carbonate precipitation and dissolution, its relevance to fossil preservation. In: Allison, P.A.; Briggs, D.E.G., eds. Taphonomy: Releasing the Data Locked in the Fossil Record. New York: Plenum; 1991:411–453.

    Google Scholar 

  • Canfield, D.E.; Raiswell, R.; Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292:659–683; 1992.

    CAS  Google Scholar 

  • Canfield, D.E.; Thamdrup, B. Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol. Ecol. 19(2):95–103; 1996.

    CAS  Google Scholar 

  • Canfield, D.E.; Thamdrup, B.; Hansen, J.W. The anaerobic degradation of organic matter in Danish coastal sediments: Fe reduction, Mn reduction and sulfate reduction. Geochim. Cosmochim. Acta 57:2563–2570; 1993b.

    Google Scholar 

  • Capone, D.G.; Kiene, R.P. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic catabolism. Limnol. Oceanogr. 33:725–749; 1988.

    CAS  Google Scholar 

  • Chanton, J.P.; Martens, C.S.; Goldhaber, M.B. Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochim. Cosmochim. Acta 51:1187–1199; 1987.

    CAS  Google Scholar 

  • Christensen, J.P.; Packard, T.T. Sediment metabolism in the northwest African upwelling system. Deep-Sea Res. 24:331–343; 1977.

    CAS  Google Scholar 

  • Christensen, J.P.; Murray, J.W.; Devol, A.H.; Codispoti, L.A. Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Global Biogeochem. Cycl. 1:97–116; 1987.

    CAS  Google Scholar 

  • Christensen, P.B.; Nielsen, L.P.; Revsbech, N.P.; Sørensen, J. Microzonation of denitrification activity in stream sediments as studied by a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiol. 55:1234–1241; 1989.

    PubMed  CAS  Google Scholar 

  • Crill, P.M.; Martens, C.S. Biogeochemical cycling in an organic-rich coastal marine basin. 6. Temporal and spatial variations in sulfate reduction rates. Geochim. Cosmochim. Acta 51:1175–1186; 1987.

    CAS  Google Scholar 

  • Dannenberg, S.; Kroder, M.; Dilling, W.; Cypionka, H. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158:93–99; 1992.

    CAS  Google Scholar 

  • Devol, A.H. Direct measurements of nitrogen gas fluxes from continental shelf sediments. Nature 349:319–321; 1991.

    CAS  Google Scholar 

  • Devol, A.H.; Christensen, J.P. Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Pacific. J. Mar. Res. 51:345–372; 1993.

    CAS  Google Scholar 

  • Ferdelman, T.G.; Lee, C.; Pantoja, S.; Harder, J.; Bebout, B.M.; Fossing, H. Sulfate reduction and methanogenesis in a Thioploca-dommated sediment off the coast of Chile. Geochim. Cosmochim. Acta 61:3065–3079; 1997.

    CAS  Google Scholar 

  • Forster, S.; Graf, G.; Kitlar, J.; Powilleit, M. Effects of bioturbation in oxic and hypoxic conditions: A microcosm experiment with a North Sea sediment community. Mar. Ecol. Prog. Ser. 116:153–161; 1995.

    Google Scholar 

  • Forster, S.; Huettel, M.; Ziebis, W. Impact of boundary layer flow on oxygen utilization in coastal sediments. Mar. Ecol. Prog. Ser. 143:173–185; 1996.

    Google Scholar 

  • Fossing, H. 35S-radiolabelling to probe biogeochemical cycling of sulfur. In: Vairavamurthy, M.A.; Schoonen, M.A.A., eds. Geochemical Transformations of Sedimentary Sulfur. Washington, DC: American Chemical Society; 1995:348–364.

    Google Scholar 

  • Fossing, H.; Gallardo, V.A.; Jørgensen, B.B.; Hüttel, M.; Nielsen, L.P.; Schulz, H.; Canfield, D.E.; Forster, S.; Glud, R.N.; Gundersen, J.K.; Küver, J.; Ramsing, N.B.; Teske, A.; Thamdrup, B.; Ulloa, O. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715; 1995.

    CAS  Google Scholar 

  • Fossing, H.; Jørgensen, B.B. Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry 8:223–245; 1989.

    Google Scholar 

  • Froelich, P.N.; Klinkhammer, G.P.; Bender, M.L., Luedtke, N.A.; Heath, G.R.; Cullen, D.; Dauphin, P.; Hammond, D.; Hartman, B.; Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. 43:1075–1090; 1979.

    CAS  Google Scholar 

  • Glud, R.N.; Forster, S.; Huettel, M. Influence of radial pressure gradients on solute exchange in stirred benthic chambers. Mar. Ecol. Prog. Ser. 141:303–311; 1996.

    Google Scholar 

  • Glud, R.N.; Gundersen, J.K.; Jørgensen, B.B.; Revsbech, N.P.; Schultz, H.D. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: In situ and laboratory measurements. Deep-Sea Res. I41:1767–1788; 1994.

    Google Scholar 

  • Glud, R.N.; Gundersen, J.K.; Revsbech, N.P.; Jørgensen, B.B.; Hüttel, M. Calibration and performance of the stirred flux chamber from the benthic lander Elinor. Deep-Sea Res. I42:1029–1042; 1995.

    Google Scholar 

  • Glud, R.N.; Holby, O.; Hoffmann, F.; Canfield, D.E. Benthic mineralization and exchange in Arctic sediments (Svalbard). Mar. Ecol. Progr. Ser. 173:237–251; 1998.

    CAS  Google Scholar 

  • Goering, G.G.; Pamatmat, M.M. Denitrification in sediments of the sea off Peru. Invest. Pesq. 35:233–242; 1970.

    Google Scholar 

  • Goldhaber, M.B.; Aller, R.C.; Cochran, J.K.; Rosenfeld, J.K.; Martens, C.S.; Berner, R.A. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report from the FOAM group. Am. J. Sci. 277:193–237; 1977.

    CAS  Google Scholar 

  • Graf, G. Benthic-pelagic coupling: A benthic view. Oceanogr. Mar. Biol. Annu. Rev. 30:149–190; 1992.

    Google Scholar 

  • Greeff, O.; Glud, R.N.; Gundersen, J.; Holby, O.; Jørgensen, B.B. A benthic lander for tracer studies in the seabed: In situ measurements of sulfate reduction. Cont. Shelf Res. 18:1581–1590; 1998.

    Google Scholar 

  • Green, M.A.; Aller, R.C.; Aller, J.Y. Carbonate dissolution and temporal abundances of Foraminifera in Long Island Sound sediments. Limnol. Oceanogr. 38:331–345; 1993.

    CAS  Google Scholar 

  • Gundersen, J.K.; Jørgensen, B.B. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature 345:604–607; 1990.

    CAS  Google Scholar 

  • Hall, P.O.J.; Anderson, L.G.; Rutgers van der Loeff, M.M.; Sundby, B.; Westerlund, S.F.G. Oxygen uptake kinetics in the benthic boundary layer. Limnol. Oceanogr. 34:734–746; 1989.

    CAS  Google Scholar 

  • Hammond, D.E.; Fuller, C.; Harmon, D.; Hartman, B.; Korosec, M.; Miller, L.G.; Rea, R.; Warren, S.; Berelson, W; Hager, S.W. Benthic fluxes in San Francisco Bay. Hydrobiologia 129:69–90; 1985.

    CAS  Google Scholar 

  • Hammond, D.E.; McManus, J.; Berelson, W.M.; Kilgore, T.E.; Pope, R.H. Early diagenesis of organic material in equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Res. II43:1365–1412; 1996.

    Google Scholar 

  • Hargrave, B.T.; Phillips, G.A. Annual in situ carbon dioxide and oxygen flux acros a subtidal marine sediment. Estuarine Coastal Shelf Sci. 12:725–737; 1981.

    Google Scholar 

  • Hedges, J.I.; Keil, R.G. Sediment organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49:81–115; 1995.

    CAS  Google Scholar 

  • Henrichs, S.M.; Reeburgh, W.S. Anaerobic mineralization of marine sediment organic matter: Rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5:191–237; 1987.

    CAS  Google Scholar 

  • Howarth, R.W. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science 203:49–51; 1979.

    PubMed  CAS  Google Scholar 

  • Howarth, R.W. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry 1:5–27; 1984.

    CAS  Google Scholar 

  • Howarth, R.W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. Syst. 19:89–110; 1988.

    Google Scholar 

  • Howarth, R.W.; Jørgensen, B.B. Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term reduction measurements. Geochim. Cosmochim. Acta 48:1807–1818; 1984.

    CAS  Google Scholar 

  • Huettel, M.; Forster, S.; Klöser, S.; Fossing, H. Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62:1863–1872; 1996.

    PubMed  CAS  Google Scholar 

  • Huettel, M.; Gust, G. Solute release mechanisms from confined sediment cores in stirred benthic chambers and flume flows. Mar. Ecol. Prog. Ser. 82:187–197; 1992.

    Google Scholar 

  • Isaksen, M.F.; Finster, K. Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar. Ecol. Prog. Ser. 137:187–194; 1996.

    CAS  Google Scholar 

  • Jensen, H.S.; Thamdrup, B. Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59; 1993.

    CAS  Google Scholar 

  • Jørgensen, B.B. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol. J. 1:11–27; 1978.

    Google Scholar 

  • Jørgensen, B.B. Mineralization of organic matter in the sea bed: Role of sulphate reduction. Nature 296:643–645; 1982.

    Google Scholar 

  • Jørgensen, B.B. Processes at the sediment-water interface. In: Bolin, B.; Cook, R.B., eds. The Major Bio geochemical Cycles and Their Interactions. New York: Wiley; 1983:477–509.

    Google Scholar 

  • Jørgensen, B.B. Biogeochemistry of chemoautotrophic bacteria. In: Schlegel, H.G.; Bowien, B., eds. Auto-trophic Bacteria. Madison, WI: Science Tech; 1989:117–146.

    Google Scholar 

  • Jørgensen, B.B. Case study: Aarhus Bay. In: Jørgensen, B.B.; Richardson, K., eds. Eutrophication in Coastal Marine Ecosystems. Washington, DC: American Geophysical Union; 1996:137–154.

    Google Scholar 

  • Jørgensen, B.B.; Bak, F. Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl. Environ. Microbiol. 57:847–856; 1991.

    PubMed  Google Scholar 

  • Jørgensen, B.B.; Revsbech, N.P Colorless sulfur bacteria, Beggiatoa spp. and Thiovolum spp. in O2 and H2S microgradients. Appl. Environ. Microbiol. 45:1261–1270; 1983.

    PubMed  Google Scholar 

  • Jørgensen, B.B.; Sørensen, J. Seasonal cycles of O2, and reduction in estuarine sediments: the significance of an reduction maximum in the spring. Mar. Ecol. Prog. Ser. 24:65–74; 1985.

    Google Scholar 

  • Kaplan, W.A.; Valiela, I.; Teal, J.M. Denitrification in a marsh ecosystem. Limnol. Oceanogr. 24:726–734; 1979.

    CAS  Google Scholar 

  • King, G.M.; Klug, M.J.; Lovley, D.R. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl. Environ. Microbiol. 45:1848–1853; 1983.

    PubMed  CAS  Google Scholar 

  • Koike, I.; Sørensen, J. Nitrate reduction and denitrification in marine sediments. In: Blackburn, T.H.; Sørensen, J., eds. Nitrogen Cycling in Coastal Marine Environments. New York: Wiley; 1988:251–273.

    Google Scholar 

  • Kostka, J.E.; Stucki, J.W.; Nealson, K.H.; Wu, J. Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrfaciens strain MR-1. Clays Clay Miner. 44:522–529; 1996.

    CAS  Google Scholar 

  • Kruse, B. Measurement of plankton O2 respiration in gas-tight plastic bags. Mar. Ecol. Prog. Ser. 94:155–163; 1993.

    Google Scholar 

  • Kuenen, J.G.; Robertson, L.A.; Van Gemerden, H. Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. In: Marshall, K.C., ed. Advances in Microbial Ecology. New York: Plenum; 1985:1–59.

    Google Scholar 

  • Kuivila, K.M.; Murray, J.W.; Devol, A.H. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim. Cosmochim. Acta 53:409–416; 1989.

    CAS  Google Scholar 

  • Lamontagne, M.G.; Valiela, I. Denitrification measured by a direct N2 flux method in sediments of Waquoit Bay, MA. Biogeochemistry 31:63–83; 1995.

    CAS  Google Scholar 

  • Lovley, D.R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259–287; 1991.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 382:445–448; 1996.

    CAS  Google Scholar 

  • Lovley, D.R.; Klug, M.J. Model for the distribution of sulfate reduction and methanogenesis in fresh water sediments. Geochim. Cosmochim. Acta 50:11–18; 1986.

    CAS  Google Scholar 

  • Lovley, D.R.; Phillips, E.J.P. Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Appl. Environ. Microbiol. 52:751–757; 1986.

    PubMed  CAS  Google Scholar 

  • Lovley, D.R.; Phillips, E.J.P. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol. 60:2394–2399; 1994.

    PubMed  CAS  Google Scholar 

  • Luther, G.W., III; Ferdelman, T.G.; Kostka, J.E.; Tsamakis, E.J.; Church, T.M. Temporal and spatial variability of reduced sulfur species (FeS2, ) and porewater in salt marsh sediments. Biogeochemistry 14:57–88; 1991.

    CAS  Google Scholar 

  • Mackin, J.E.; Swider, K.T. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. J. Mar. Res. 47:681–716; 1989.

    CAS  Google Scholar 

  • Martens, C.S.; Klump, J.V. Biogeochemical cycling in an organic-rich coastal marine basin. I. Methane sediment-water exchange processes. Geochim. Cosmochim. Acta 44:471–490; 1980.

    CAS  Google Scholar 

  • Martens, C.S.; Klump, J.V. Biogeochemical cycling in an organic-rich coastal marine basin. 4. Carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim. Cosmochim. Acta 48:1987–2004; 1984.

    CAS  Google Scholar 

  • Middelburg, J.J.; Soetaert, K.; Herman, P.M.J. Evaluation of the nitrogen isotope pairing method for measuring denitrification: a simulation analysis. Limnol. Oceanogr. 41:1839–1844; 1996a.

    CAS  Google Scholar 

  • Middelburg, J.J.; Soetaert, K.; Herman, P.M.J.; Heip, C.H.R. Denitrification in marine sediments: A model study. Global Biogeochem. Cycles 10:661–673; 1996b.

    CAS  Google Scholar 

  • Miller-Way, T.; Twilley, R.R. Theory and operation of continuous flow systems for the study of benthic-pelagic coupling. Mar. Ecol. Prog. Ser. 140:257–269; 1996.

    Google Scholar 

  • Moeslund, L.; Thamdrup, B.; Jorgensen, B.B. Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics. Biogeochemistry 27:129–152; 1994.

    CAS  Google Scholar 

  • Nielsen, L.P. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol. Ecol. 86:357–362; 1992.

    CAS  Google Scholar 

  • Nielsen, L.P.; Glud, R.N. Denitrification in a coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber. Mar. Ecol. Prog. Ser. 137:181–186; 1996.

    Google Scholar 

  • Nielsen, L.P.; Risgaard-Petersen, N.; Rysgaard, S.; Blackburn, T.H. Reply to the note by Middelburg et al. Limnol. Oceanogr. 41:1845–1846; 1996.

    CAS  Google Scholar 

  • Nishio, T.; Koike, I.; Hattori, A. Denitrification, nitrate reduction, and oxygen consumption in coastal and estuarine sediments. Appl. Environ. Microbiol. 43:648–653; 1982.

    PubMed  CAS  Google Scholar 

  • Nishio, T.; Koike, I.; Hattori, A. Estimates of denitrification and nitrification in coastal and estuarine sediments. Appl. Environ. Microbiol. 45:1983; 1983.

    Google Scholar 

  • Nowicki, B.L. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuarine Coastal Shelf Sci. 38:137–156; 1994.

    CAS  Google Scholar 

  • Pamatmat, M.M. Benthic community metabolism: a review and assessment of present status and outlook. In: Coull, B.C., ed. Ecology of Marine Benthos. Columbia, SC: Univ. South Carolina Pr.; 1977: p. 89–111.

    Google Scholar 

  • Pamatmat, M.M. Heat production by sediment: Ecological significance. Science 215:395–397; 1982.

    PubMed  CAS  Google Scholar 

  • Pamatmat, M.M.; Graf, G.; Bengtsson, W.; Noval, C.S. Heat production, ATP concentration and electron transport activity of marine sediments. Mar. Ecol. Prog. Ser. 4:135–143; 1981.

    CAS  Google Scholar 

  • Parkes, R.J.; Cragg, B.A.; Bale, S.J.; Goodman, K.; Fry, C. A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J. Microbiol. Methods 23:235–249; 1995.

    CAS  Google Scholar 

  • Parkes, R.J.; Gibson, G.R.; Mueller-Harvey, I.; Buckingham, W.J.; Herbert, R.A. Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J. Gen. Microbiol. 135:175–187; 1989.

    CAS  Google Scholar 

  • Petersen, S.O. Influence of liquid cattle manure on reduction processes in soil. Biol. Fertility Soils 15:137–143; 1993.

    CAS  Google Scholar 

  • Phillips, E.J.P.; Lovley, D.R. Determination of Fe(III) and Fe(II) in oxalate extracts of sediments. Soil Sci. Soc. Am. J. 51:938–941; 1987.

    CAS  Google Scholar 

  • Postma, D. Concentrations of Mn and separation from Fe in sediments. 1. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim. Cosmochim. Acta 49:1023–1033; 1985.

    CAS  Google Scholar 

  • Pyzik, A.J.; Sommer, S.E. Sedimentary iron mono-sulfides: Kinetics and mechanism of formation. Geochim. Cosmochim. Acta 45:687–698; 1981.

    CAS  Google Scholar 

  • Rasmussen, H.; Jørgensen, B.B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar. Ecol. Prog. Ser. 81:289–303; 1992.

    CAS  Google Scholar 

  • Reeburgh, W.S. Methane consumption in Cariaco trench waters and sediments. Earth Planet. Sci. Lett. 28:337–344; 1976.

    CAS  Google Scholar 

  • Reeburgh, W.S. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47:345–352; 1980.

    CAS  Google Scholar 

  • Reeburgh, W.S. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11:269–298; 1983.

    CAS  Google Scholar 

  • Reimers, C.E.; Fischer, K.M.; Merewether, R.; Smith, K.L., Jr.; Jahnke, R.A. Oxygen microprofiles measured in situ in deep ocean sediments. Nature 320:741–744; 1986.

    CAS  Google Scholar 

  • Reimers, C.E.; Jahnke, R.A.; McCorkle, D.C. Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global carbon cycle. Global Biogeochem. Cycles 6:199–224; 1992.

    CAS  Google Scholar 

  • Relexans, J.C. Measurements of the respiratory electron transport activity in marine sediments: State-of-the-art and interpretation. I. Methodology and review of literature data. Mar. Ecol. Prog. Ser. 136:277–287; 1996a.

    Google Scholar 

  • Relexans, J.C. Measurements of the respiratory electron transport activity in marine sediments: State-of-the-art and interpretation. II. Significance of ETS activity data. Mar. Ecol. Prog. Ser. 136:289–301; 1996b.

    Google Scholar 

  • Revsbech, N.P. An oxygen electrode with a guard cathode. Limnol. Oceanogr. 34:474–478; 1989.

    CAS  Google Scholar 

  • Revsbech, N.P; Jørgensen, B.B.; Blackburn, T.H.; Cohen, Y. Microelectrode studies of photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol. Oceanogr. 28:1062–1074; 1983.

    Google Scholar 

  • Risgaard-Petersen, N.; Rysgaard, S. Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In: Alef, K.; Nannipieri, P., eds. Anaerobic Microbial Activities in Soil. London: Academic; 1995:287–310.

    Google Scholar 

  • Roden, E.E.; Lovley, D.R. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiol. J. 11:49–56; 1993.

    CAS  Google Scholar 

  • Roden, E.E.; Tuttle, J.H. Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments. Mar. Ecol. Prog. Ser. 93:101–118; 1993a.

    CAS  Google Scholar 

  • Roden, E.E.; Tuttle, J.H. Inorganic sulfur turnover in oligohaline estuarine sediments. Biogeochemistry 22:81–105; 1993b.

    CAS  Google Scholar 

  • Roden, E.E.; Wetzel, R.G. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr. 41:1733–1748; 1996.

    CAS  Google Scholar 

  • Rysgaard, S.; Risgaard-Petersen, N.; Nielsen, L.P.; Revsbech, N.P. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Appl. Environ. Microbiol. 59:2093–2098; 1993.

    PubMed  CAS  Google Scholar 

  • Rysgaard, S.; Thamdrup, B.; Risgaard-Petersen, N.; Fossing, H.; Christensen; P.B., and Dalsgaard, T. Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar. Ecol. Progr. Ser. 175:261–276; 1998.

    CAS  Google Scholar 

  • Schink, B. Principles and limita of anaerobic degradation: Environmental and technological aspects. In: Zehnder, A.J.B., ed. Biology of Anaerobic Microorganisms. New York: Wiley; 1988:771–846.

    Google Scholar 

  • Seitzinger, S.P. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33:702–724; 1988.

    CAS  Google Scholar 

  • Seitzinger, S.P.; Nixon, S.W.; Pilson, M.E.; Burke, S. Denitrification and N2O production in nearshore marine sediments. Geochim. Cosmochim. Acta 44:1853–1860; 1980.

    CAS  Google Scholar 

  • Skyring, G.W. Sulfate reduction in coastal ecosystems. Geomicrobiol. J. 5:295–374; 1987.

    CAS  Google Scholar 

  • Smith, K.L., Jr. benthic community respiration in the N.W. Atlantic Ocean: In situ measurements from 40 to 5200 m. Mar. Biol. 47:337–347; 1978.

    CAS  Google Scholar 

  • Smith, K.L., Jr.; Hinga, K.R. Sediment community respiration in the deep sea. In: Rowe, G.T., ed. The Sea. New York: Wiley; 1983:331–379.

    Google Scholar 

  • Sørensen, J. Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Appl. Environ. Microbiol. 36:139–143; 1978.

    PubMed  Google Scholar 

  • Sørensen, J. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Environ. Microbiol. 43:319–324; 1982.

    PubMed  Google Scholar 

  • Sørensen, J.; Christensen, D.; Joørgensen, B.B. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42:5–11; 1981.

    PubMed  Google Scholar 

  • Sorokin, Y.I. Experimental investigation of bacterial sulfate reduction in the Black Sea using 35S. Mikrobiologiya 31:402–410; 1962.

    CAS  Google Scholar 

  • Spratt, H.G.; Morgan, M.D. Sulfur cycling in a cedar-dominated, freshwater wetland. Limnol. Oceanogr. 35:1586–1593; 1990.

    CAS  Google Scholar 

  • Spratt, H.G., Jr.; Morgan, M.D.; Good, R.E. Sulfate reduction in peat from a New Jersey Pinelands cedar swamp. Appl. Environ. Microbiol. 53:1406–1411; 1987.

    PubMed  CAS  Google Scholar 

  • Straub, K.L.; Benz, M.; Schink, B.; Widdel, F. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl. Environ. Microbiol. 62:1458–1460; 1996.

    PubMed  CAS  Google Scholar 

  • Suess, E. Particulate organic carbon flux in the ocean-surface productivity and oxygen utilization. Nature 288:260–263; 1980.

    CAS  Google Scholar 

  • Sweerts, J.P.R.A.; St Louis, V; Cappenberg, T.E. Oxygen concentration profiles and exchange in sediment cores with circulated overlying water. Freshwater Biol. 21:552–556; 1989.

    Google Scholar 

  • Swider, K.T.; Mackin, J.E. Transformations of sulfur compounds in marsh-flat sediments. Geochim. Cosmochim. Acta 53:2311–2323; 1989.

    CAS  Google Scholar 

  • Teal, J.M.; Kanwisher, J. Gas exchange in a Georgia salt marsh. Limnol. Oceanogr. 6:388–399; 1961.

    Google Scholar 

  • Tengberg, A.; De Bovee, F.; Hall, P.; Berelson, W.; Chadwick, D.; Ciceri, G.; Crassous, P.; Devol, A.; Emerson, S.; Gage, J.; Glud, R.; Grazziottini, F.; Gundersen, J.; Hammond, D.; Helder, W.; Hinga, K.; Holby, O.; Jahnke, R.; Khripounoff, A.; Lieberman, S.; Nuppenau, V.; Pfannkuche, O.; Reimers, C.; Rowe, G.; Sahami, A.; Sayles, F.; Schurter, M.; Smallman, D.; Wehrli, B.; De Wilde, P. Benthic chamber and profiling landers in oceanography: A review of design, technical solutions and functioning. Prog. Oceanogr. 35:253–294; 1995.

    Google Scholar 

  • Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16:41–84; 2000.

    CAS  Google Scholar 

  • Thamdrup, B.; Canfield, D.E. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol. Oceanogr. 41:1629–1650; 1996.

    PubMed  CAS  Google Scholar 

  • Thamdrup, B.; Canfield, D.E.; Ferdelman, T.G.; Glud, R.N.; Gundersen, J.K. A biogeochemical survey of the anoxic basin Golfo Dulce, Costa Rica. Rev. Biol. Tropical 44(suppl. 3): 19–33; 1996.

    Google Scholar 

  • Thamdrup, B.; Fossing, H.; Jørgensen, B.B. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58:5115–5129; 1994a.

    CAS  Google Scholar 

  • Thamdrup, B.; Glud, R.N.; Hansen, J.W. Manganese oxidation and in situ fluxes from a coastal sediment. Geochim. Cosmochim. Acta 58:2563–2570; 1994b.

    CAS  Google Scholar 

  • Urban, N.R.; Brezonik, P.L.; Baker, L.A.; Sherman, L.A. Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin. Limnol. Oceanogr. 39:797–815; 1994.

    CAS  Google Scholar 

  • Vedel, A.; Andersen, B.B.; Riisgård, H.U. Field investigations of pumping activity of the facultatively filter-feeding polychaete Nereis diversicolor using an improved infrared phototransducer system. Mar. Ecol. Prog. Ser. 103:91–101; 1994.

    Google Scholar 

  • Wallmann, K.; Hennies, K.; König, I.; Petersen, W.; Knauth, H.D. A new procedure for the determination of “reactive” ferric iron and ferrous iron minerals in sediments. Limnol. Oceanogr. 38:1803–1812; 1993.

    CAS  Google Scholar 

  • Wang, Y.; Van Cappellen, P. A multicomponent reactive transport model for early diagenesis: Application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60:2993–3014; 1996.

    CAS  Google Scholar 

  • Westrich, J.T. The consequences and controls of bacterial sulfate reduction in marine sediments. Ph.D. thesis, Yale University; 1983.

    Google Scholar 

  • Wheatcroft, R.A.; Martin, W.R. Spatial variation in short-term (234Th) sediment bioturbation intensity along an organic-carbon gradient. J. Mar. Res. 54:763–792; 1996.

    CAS  Google Scholar 

  • Widdel, F.; Hansen, T.A. The dissimilatory sulfate-and sulfur-reducing bacteria. In: Balows, H. et al., eds. The Procaryotes. Berlin: Springer-Verlag; 1991:583–624.

    Google Scholar 

  • Wieder, R.K.; Lang, G.E. Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5:221–242; 1988.

    CAS  Google Scholar 

  • Wollast, R. The coastal organic carbon cycle: Fluxes, sources, and sinks. In: Mantoura, R.F.C.; Martin, J.-M.; Wollast, R., eds. Ocean Marine Processes in Global Change. New York: Wiley; 1991:365–381.

    Google Scholar 

  • Yao, W.; Millero, F.J. The rate of sulfide oxidation by δMnO2 in seawater. Geochim. Cosmochim. Acta 57:3359–3365.

    Google Scholar 

  • Zhabina, N.N.; Volkov, LI. A method of determination of various sulfur compounds in sea sediments and rocks. In: Krumbein, W.E., ed. Environmental Biogeochemistry and Geomicrobiology. Ann Arbor, MI: Ann Arbor Science; 1978:735–746.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thamdrup, B., Canfield, D.E. (2000). Benthic Respiration in Aquatic Sediments. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics