Ecosystem Climate Manipulations

  • Karin P. Shen
  • John Harte


Human activities such as fossil fuel burning and deforestation are expected to cause global climate change of a rate and magnitude unmatched in the historical record. Results from climate modeling studies indicate that the earth is likely to experience an increase in global average temperature of several degrees Celsius by the end of the next century (IPCC 1995). This temperature increase, and other associated climate changes, will have far-reaching effects on the natural environment and human society.


Global Warming Land Surface Scheme Niwot Ridge Snow Fence Field Manipulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamse, P.; Britz, S.J. Rapid fluence-dependent responses to ultraviolet-B radiation in cucumber leaves: The role of UV-absorbing pigments in damage protection. J. Plant Physiol. 148:57–62; 1996.Google Scholar
  2. Anderson, J.E.; Williams, J.; Kriedemann, P.E.; Austin, M.P.; Farquhar, G.D. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Aust. J. Plant Physiol. 23:311–320; 1996.Google Scholar
  3. Anderson, J.M. Responses of soils to climate change. In: Woodward, F.I., ed. Global Climate Change: The Ecological Consequences. Advances in Ecological Research. Vol. 22. New York: Academic Press, 1992:163–210.Google Scholar
  4. Barnes, P.W.; Flint, S.D.; Caldwell, M.M. Early-season effects of supplemented solar UV-B radiation on seedling emergence, canopy structure, simulated stand photosynthesis and competition for light. Global Change Biol. 1:43–53; 1995.Google Scholar
  5. Beerling, D.J.; Woodward, F.I. The climate change experiment (CLIMEX): Phenology and gas exchange responses of boreal vegetation to global change. Global Ecol. Biogeogr. Lett. 4:17–26; 1994.Google Scholar
  6. Bjorn, L.O.; Murphy, T.M. Computer calculation of solar ultraviolet radiation at ground level. Physiol. Vegetat. 23:555–561; 1985.Google Scholar
  7. Bridgham, S.D.; Pastor, J.; Updegraff, K.; Janssens, J.A.; Malterer, T.J. [Abstract] Paper presented at the Ecological Society of America Annual Meeting, Snowbird, Utah, July 30 to August 3, 1995.Google Scholar
  8. Brooks, P.D.; Williams, M.W.; Schmidt, S.K. Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113; 1996.Google Scholar
  9. Burke, I.C.; Elliott, E.T.; Cole, C.V. Influence of macroclimate, landscape position, and management on soil organic matter in agroecosystems. Ecol. Applic. 5:124–131; 1995.Google Scholar
  10. Caldwell, M.M.; Camp, L.B.; Warner, C.W.; Flint, S.D. Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: Worrest, R.C.; Caldwell, M.M., eds. Stratospheric Ozone Reduction, Solar Ultraviolet Radiation, and Plant Life. Berlin: Springer-Verlag; 1986.Google Scholar
  11. Caldwell, M.M.; Flint, S.D. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climat. Change 28:375–394; 1994.Google Scholar
  12. Caldwell, M.M.; Teramura, A.H.; Tevini, M. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evolut. 4:363–367; 1989.Google Scholar
  13. Carpenter, S.R. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680; 1996.Google Scholar
  14. Chapin, F.S.; Shaver, G.R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77:822–840; 1996.Google Scholar
  15. Chapin, F.S.; Shaver, G.R.; Giblin, A.E.; Nadelhoffer, K.J.; Laundre, J.A. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711; 1995.Google Scholar
  16. Coulson, S.; Hodkinson, I.D.; Strathdee, A.; Bale, J.S.; Block, W.; Worland, M.R.; Webb, N.R. Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny-Alesund, Svalbard. Polar Biol. 13:67–70; 1993.Google Scholar
  17. Coulson, S.J.; Hodkinson, I.D.; Webb, N.R.; Block, W.; Bale, J.S.; Strathdee, A.T.; Worland, M.R.; Wooley, C.; Worland, M.R.; Wooley, C. Effects of experimental temperature elevation on high-arctic soil micro-arthropod populations. Polar Biol. 16:147–153; 1996.Google Scholar
  18. Davis, M.B.; Zabinski, C. Changes in geographical range resulting from greenhouse warming: Effects on biodiversity in forests. In: Peters, R.L.; Lovejoy, T.E., eds. Global Warming and Biological Diversity. New Haven, CT: Yale Univ. Pr.; 1992:297–308.Google Scholar
  19. Debevec, E.M.; Maclean, S.F. Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic Alp. Res. 25:56–62; 1993.Google Scholar
  20. Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. Boulder, CO: National Center for Atmospheric Research; 1986.Google Scholar
  21. Dickson, D. Aerosols role simulated in new global warming model. Nature 374:487–487; 1995.Google Scholar
  22. Dohring, T.; Kofferlein, M.; Thiel, S.; Seidlitz, H.K. Spectral shaping of artificial UV-B irradiation for vegetation stress research. J. Plant Physiol. 148:115–119; 1996.Google Scholar
  23. Dudzik, M.; Harte, J.; Jassby, A.; Lapan, E.; Levy, D.; Rees, J. Some considerations in the design of aquatic microcosms for plankton studies. Int. J. Environ. Stud. 13:125–130; 1979.Google Scholar
  24. Dunne, J. Personal Communication, University of California, Berkeley, CA, 1996.Google Scholar
  25. Edwards, N.T.; Norby, R.J. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant Soil 206:85–97; 1998.Google Scholar
  26. Ehleringer, J.; Field, C. Scaling Physiological Processes: Leaf to Globe. San Diego, CA: Academic; 1993.Google Scholar
  27. Fiscus, E.L.; Booker, F.L.; Miller, J.E. Response of soybean bulk leaf water relations to ultraviolet-B irradiation. J. Plant Physiol. 148:63–68; 1996.Google Scholar
  28. Flint, S.D.; Caldwell, M.M. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors. J. Plant Physiol. 148:107–114; 1996.Google Scholar
  29. Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycl. 10:603–628; 1996.Google Scholar
  30. Galen, C.; Stanton, M.L. Responses of snowbed plant species to changes in growing-season length. Ecology 76:1546–1557; 1995.Google Scholar
  31. Gates, W.L.; Henderson-Sellers, A.; Boer, G.J.; Folland, C.K.; McAvaney, B.J.; Semazzi, F., Smith, N., Weaver, A.J.; Zeng, Q.-C. Climate models: Evaluation. In: Houghton, J.T.; Meira Filho, L.G.; Callander, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995: 483–516.Google Scholar
  32. Green, A.E.S. The penetration of ultraviolet radiation to the ground. Physiol. Plant 58:351–359; 1983.Google Scholar
  33. Green, A.E.S.; Cross, K.R.; Smith, L.A. Improved analytic characterization of ultraviolet skylight. Photochem. Photobiol. 31:59–65; 1980.Google Scholar
  34. Greenberg, B.M.; Wilson, M.I.; Gerhardt, K.E.; Wilson, K.E. Morphological and physiological responses of Brassica napus to ultraviolet-B radiation: Photo-modification of ribulose-1,5-bisphosphate carboxylase/oxygenase and potential acclimation processes. J. Plant Physiol. 148:78–85; 1996.Google Scholar
  35. Hanson, P.J.; Edwards, N.T. Personal Communication, Oak Ridge, TN, 1996.Google Scholar
  36. Hansen, J.; Fung, L; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G. Global climate changes as forecast by the Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. 93:9341–9364; 1988a.Google Scholar
  37. Hansen, J.; Rind, D.; DelGenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Reudy, R.; Karl, T. Regional greenhouse climate effects. In: Coping with Climate Change. Proceedings of the Second North American Conference on Preparing for Climate Change. Washington, DC: Climate Institute; 1988b.Google Scholar
  38. Harte, J.; Jensen, D.; Torn, M.S. The nature and consequences of indirect linkages between climate change and biological diversity. In: Peters, R.; Lovejoy, T., eds. Global Warming and Biological Diversity. New Haven, CT: Yale Univ. Pr.; 1992.Google Scholar
  39. Harte, J.; Rawa, A.; Price, V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biogeochem. 28:313–322; 1995a.Google Scholar
  40. Harte, J.; Shaw, R. Shifting dominance within a montane vegetation community: Results of a climate-warming experiment. Science 267:876–880; 1995.PubMedGoogle Scholar
  41. Harte, J.; Torn, M.S.; Chang, F.R.; Feifarek, B.; Kinzig, A.R; Shaw, R.; Shen, K. Global warming and soil microclimate: Results from a meadow-warming experiment. Ecol. Applic. 5:132–150; 1995b.Google Scholar
  42. Hartmann, D.L. Modeling climate change. In: MacDonald, G.J.; Sertorio, L., eds. Global Climate and Ecosystem Change. NATO ASI Series B: Physics. Vol. 240, New York: Plenum; 1990.Google Scholar
  43. Harvey, L.D.D.; Schneider, S.H. Transient climate response to external forcing on 100–104 year time-scales. 1. Experiments with globally-averaged, coupled, atmosphere, land, and ocean energy balance models. J. Geophys. Res. 90:2191–2206; 1985.Google Scholar
  44. Hattenschwiler, S.; Korner, C. System-level adjustments to elevated CO2 in model spruce ecosystems. Global Change Biol. 2:377–387; 1996.Google Scholar
  45. Henderson-Sellers, A.; McGuffie, K. Land-surface characterization in greenhouse climate simulations. International J. Climatol. 14:1065–1094; 1994.Google Scholar
  46. Hillier, S.H.; Sutton, F.; Grime, J.P. A new technique for the experimental manipulation of temperature in plant communities. Funct. Ecol. 8:755–762; 1994.Google Scholar
  47. Hunt, H.W.; Elliott, E.T.; Detling, J.K.; Morgan, J.A.; Chen, D.X. Responses of a C-3 and a C-4 perennial grass to elevated CO2 and temperature under different water regimes. Global Change Biol. 2:35–47; 1996.Google Scholar
  48. [IPCC] Intergovernmental Panel on Climate Change. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995.Google Scholar
  49. Jensen, D.B. Population Differentiation in Tree-Ring Growth Responses of White Fir (Abies concolor) to Climate: Implications for Predicting Forest Responses to Climate Change. Doctoral thesis, University of California, Berkeley, CA; 1993.Google Scholar
  50. Kattenberg, A.; Maskell, K. Climate models: Projections of future change. In: Hougton, J.T.; Meira Filho, L.G.; Callender, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995:285–357.Google Scholar
  51. Keeling, C.D.; Whorf, T.P. Atmospheric CO2 records from sites in the SIO air sampling networked. In: Trends: A Compendium of Data on Global Change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory; 1998.Google Scholar
  52. Kennedy, A.D. Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17:131–140; 1994.Google Scholar
  53. Kennedy, A.D. Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Funct. Ecol. 9:340–350; 1995a.Google Scholar
  54. Kennedy, A.D. Simulated climate change: Are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biol. 1:29–42; 1995b.Google Scholar
  55. Klein, J. Personal Communication, University of California, Berkeley, CA, 1998.Google Scholar
  56. Korner, C.; Arnone, J.A. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672–1675; 1992.PubMedGoogle Scholar
  57. Lashof, D.A. The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climat. Change 14:213–242; 1989.Google Scholar
  58. Lawton, J.H. The Ecotron facility at Silwood Park: The value of big bottle experiments. Ecology 77:665–669; 1996.Google Scholar
  59. Lawton, J.H.; Naeem, S.; Woodfin, R.M.; Brown, V.K.; Gange, A.; Godfray, H.J.C.; Heads, P.A.; Lawler, S.; Magda, D.; Thomas, C.D.; Thompson, L.J.; Young, S. The Ecotron: A controlled environmental facility for the investigation of population and ecosystem processes. Philos. Trans. R. Soc. Lond. [Biol.] 341:181–194; 1993.Google Scholar
  60. Loik, M.E.; Harte, J. High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia 108:224–231; 1996.Google Scholar
  61. Lubchenco, J. The sustainable biosphere initiative: An ecological research agenda. A report from the Ecological Society Of America. Ecology 72:371–412; 1991.Google Scholar
  62. Mackerness, S.A.H.; Butt, P.J.; Jordan, B.R.; Thomas, B. Amelioration of Ultraviolet-B-induced down-regulation of MRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis. J. Plant Physiol. 148:100–106; 1996.Google Scholar
  63. MacPherson, G. Personal communication, University of Arizona, Tucson, AZ, 1995.Google Scholar
  64. Manabe, S.; Weatherald, R.T. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci. 44:1211–1235; 1987.Google Scholar
  65. Marion, G.M.; Henry, G.H.R.; Freckman, D.W.; Johnstone, J.; Jones, G.; Jones, M.H.; L vesque, E.; Molau, U.; Molgaard, P.; Parsons, A.N.; Svoboda, J.; Virginia, R.A. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biol. 3(Supl. 1):20–32; 1997.Google Scholar
  66. Mark, U.; Sailemark, M.; Tevini, M. Effects of solar UVB radiation on growth, flowering and yield of central and southern european maize cultivars (Zea mays l). Photochem. Photobiol. 64:457–463; 1996.Google Scholar
  67. Naeem, S.; Thompson, L.J.; Lawler, S.P.; Lawton, J.H.; Woodfin, R.M. Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737; 1994.Google Scholar
  68. Nijs, I.; Kockelbergh, F.; Teughels, H.; Blum, H.; Hendrey, G.; Impens, I. Free Air Temperature Increase (FATI): A new tool to study global warming effects on plants in the field. Plant Cell Environ. 19:495–502; 1996.Google Scholar
  69. Norby, R.J.; Edwards, N.T.; Riggs, J.S.; Abner, C.H.; Wullscleger, S.D.; Gunderson, C.A. Temperature-controlled open-top chambers for global change research. Global Change Biol. 3:259–267; 1997.Google Scholar
  70. [NSFESP] National Science Foundation, Ecosystem Studies Program. Soil-warming experiments in global change research, Woods Hole, MA, September 27 and 28, 1991.Google Scholar
  71. Oechel, W.C.; Riechers, G.; Lawrence, W.T.; Prudhomme, T.J.; Grulke, N.; Hastings, S.J. CO2LT: An automated, null-balance system for studying the effects of elevated CO2 and global climate change on unmanaged ecosystems. Funct. Ecol. 6:86–100; 1992.Google Scholar
  72. Olszyk, D.; Dai, Q.J.; Teng, P.; Leung, H.; Luo, Y.; Peng, S.B. UV-B effects on crops: Response of the irrigated rice ecosystem. J. Plant Physiol. 148:26–34; 1996.Google Scholar
  73. Pacala, S.; and Hurtt, G. Terrestrial vegetation and climate change: Integrating models and experiments. In: Kareiva, P.; Kingsolver, P.; Huey, R., eds. Biotic Interactions and Global Change. Sunderland, MA: Sinauer; 1993: 57–74.Google Scholar
  74. Peterjohn, W.T.; Melillo, J.M.; Bowles, F.P.; Steudler, P.A. Soil warming and trace gas fluxes: Experimental design and preliminary flux results. Oecologia 93:18–24; 1993.Google Scholar
  75. Peterjohn, W.T.; Melillo, J.M.; Steudler, P.A.; Newkirk, K.M.; Steudler, P.A.; Newkirk, K.M.; Bowles, F.P.; Aber, J.D. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol. Applic. 4:617–625; 1994.Google Scholar
  76. Randall, D.A.; Dazlich, D.A.; Zhang, C.; Denning, A.S.; Sellers, P.J.; Tucker, C.J.; Bounoua, L.; Los, S.O.; Justice, C.O.; Fung, I. A revised land surface parameterization (SIB2) for GCMs. 3. The greening of the Colorado State University general circulation model. J. Climate 9:738–763; 1996.Google Scholar
  77. Rau, W.; Hofmann, H. Sensitivity to UV-B of plants growing in different altitudes in the Alps. J. Plant Physiol. 148:21-25; 1996.Google Scholar
  78. Rawat, A.S.; Purohit, A.N. CO2 and water vapour exchange in 4 alpine herbs at 2 altitudes and under varying light and temperature conditions. Photosyn. Res. 28:99–108; 1991.Google Scholar
  79. Repo, T.; Hanninen, H.; Kellomaki, S. The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant Cell Environ. 19:209–216; 1996.Google Scholar
  80. Ross, R.J.; Elliott, W.P. Tropospheric water vapor climatology and trends over North America: 1973-93. J. Climate 9:3561–3574; 1996.Google Scholar
  81. Rosswall, T., Woodmansee, R.G.; Risser, P.G. Scales and global change, Chichester, England: Wiley; 1988.Google Scholar
  82. Rundel, R. Computation of spectral distribution and intensity of solar UV-B radiation. In: Worrest, R.C.; Caldwell, M.M., eds. Stratospheric Ozone Reduction, Solar UV, and Plant Life. NATO ASI Series G. Vol. 8. New York: Plenum; 1986:49–62.Google Scholar
  83. Rykbost, K.A.; Boersma, L.; Mack, H.J.; Schmisseur, W.E. Yield response to soil warming: Agronomic crops. Agron. J. 67:733–738; 1975.Google Scholar
  84. Saleska, S.; Harte, J.; Torn, M. Effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biol. 5:125–142; 1999.Google Scholar
  85. Sato, N.; Sellers, P.J.; Randall, D.A.; Schneider, E.K.; Shukla, J.; Kinter, J.L.; Hou, Y.T.; and Albertazzi, E. Effects of implementing the Simple Biosphere Model in a general circulation model. J. Atmos. Sci. 46:2757–2782; 1989.Google Scholar
  86. Schimel, D.; Alves, D.; Enting, I.; Heimann, M.; Joos, F.; Raynaud, D.; Wigley, T.; Prather, M.; Derwent, R.; Enhalt, D.; Fraser, P.; Sanhueza, E.; Zhou, X.; Jonas, P.; Charlson, R.; Rodhe, H.; Sadavisan, S.; Shine, K.P.; Fouquart, Y.; Ramaswamy, V.; Solomon, S.; Srinivasan, J.; Albirtton, D.; Derwent, R.; Isakson, I.; Lal, M.; Wuebbles, D. Radiative forcing of climate. In: Houghton, J.T.; Meira Filho, L.G.; Callender, B.A.; Harris, N.; Kattenberg, A.; Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge Univ. Pr.; 1995:65–132.Google Scholar
  87. Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; Sato, N.; Field, C.B.; Henderson-Sellers, A. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–509; 1997.PubMedGoogle Scholar
  88. Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 43:505–530; 1986.Google Scholar
  89. Shen, K.P. A modelling study of experimental warming of a sub-alpine meadow. Doctoral thesis, University of California, Berkeley, CA, 1998.Google Scholar
  90. Stanton, M.L.; Rejmanek, M.; and Galen, C. Changes in vegetation and soil fertility along a predictable snowmelt gradient in the mosquito range, Colorado, USA. Arctic Alp. Res. 26:364–374; 1994.Google Scholar
  91. Strathdee, A.T.; Bale, J.S.; Block, W.C.; Coulson, S.J.; Hodkinson, I.D.; Webb, N.R. Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (hemiptera, aphididae) on Spitsbergen. Oecologia 96:457–465; 1993.Google Scholar
  92. Sturges, D.L. Response of mountain big sagebrush to induced snow accumulation. J. Appl. Ecol. 26:1035–1041; 1989.Google Scholar
  93. Sud, Y.C.; Sellers, P.J.; Mintz, Y., Chou, M.D.; Walker, G.K.; Smith, W.E. Influence of the biosphere on the global circulation and hydrologic cycle: a GCM simulation experiment. Agric. For. Meteorol. 52:133–180; 1990.Google Scholar
  94. Tabler, R.D. Geometry and density of drifts formed by snow fences. J. Glaciol. 26:405–419; 1980.Google Scholar
  95. Tate, K.R. Assessment, based on a climosequence of soils in tussock grasslands, of soil carbon storage and release in response to global warming. J. Soil Sci. 43:697–707; 1992.Google Scholar
  96. Tevini, M.; Mark, M.; Saile, M. Plant experiments in growth chambers illuminated with natural sunlight. In: Payer, H.D.; Pfirrman, T.; Mathy, P., eds. Environmental Research with Plants in Closed Chambers, Brussels: Commission of the European Communities; 1989:240–251.Google Scholar
  97. Tissue, D.T.; Oeschel, W.C. Response of Eriphorum vaginatum to elevated CO2 and temperature in the Alaskan Arctic tundra. Ecology 76:721–733; 1987.Google Scholar
  98. Torn, M.S.; Harte, J. Methane consumption by montane soils: Implications for positive and negative feedback with climatic change. Biogeochemistry 32:53–67; 1996.Google Scholar
  99. Townsend, A.R.; Vitousek, P.M.; Trumbore, S.E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology 76:721–733; 1995.Google Scholar
  100. Trumbore, S.E.; Chadwick, O.A.; Amundson, R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396; 1996.Google Scholar
  101. Van Cleve, K.; Dyrness, C.T.; Viereck, L.A.; Fox, J.; Chapin, F.S.; Oeschel, W. Tiaga ecosystems in interior Alaska. BioScience 33:39–44; 1983.Google Scholar
  102. Van Cleve, K.; Oechel, W.C.; Hom, J.L. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can. J. For. Res. 20:1530–1535; 1990.Google Scholar
  103. Verhoef, H.A. The role of soil microcosms in the study of ecosystem processes. Ecology 77:685–690; 1996.Google Scholar
  104. Verseghy, D.L.; McFarlane, N.A.; Lazare, M. CLASS: A Canadian land surface scheme for GCMs. 2. Vegetation model and coupled runs. Int. J. Climatol. 13:347–370; 1993.Google Scholar
  105. Vitousek, P.M.; Matson, P.A. Effects of tropical deforestation on global and regional atmospheric chemistry—Comment. Climat. Change 19:159–162; 1991.Google Scholar
  106. Walker, B.H. Ecological consequences of atmospheric and climate change. Climat. Change 18:301–316; 1991.Google Scholar
  107. Woodward, LE A review of the effects of climate on vegetation: Ranges, competition, and composition. In: Peters, R.L.; Lovejoy, T.E., eds. Global Warming and Biological Diversity. New Haven: Yale Univ. Pr.; 1992:105–123.Google Scholar
  108. Wynn-Williams, D.D. Microbial colonization processes in Antarctic fellfield soils: An experimental overview. Proc. NIPR Symp. Polar Biol. 3:164–178; 1990.Google Scholar
  109. Wynn-Williams, D.D. Plastic cloches for manipulating natural terrestrial environments. In: Wynn-Williams, D.D., ed. BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research. Cambridge: Scientific Committee on Antarctic Research; 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Karin P. Shen
  • John Harte

There are no affiliations available

Personalised recommendations