Skip to main content

Ecosystem Nutrient Balance and Dynamics

  • Chapter
Methods in Ecosystem Science

Abstract

Many attempts at balancing ecosystem-level nutrient budgets have been made in the past few decades using a variety of approaches, and for a variety of different purposes. Relatively simple mass balance equations have been used at the level of the watershed that might comprise single forested ecosystems (e.g., Binkley et al. 1982; Stohlgren et al. 1991; Likens and Bormann 1995; Hedin et al. 1995; Stottlemyer and Troendle 1992), or at the level of a larger-scale region (e.g., Gold 1990; Frink 1991; Jaworski et al. 1992; Howarth et al. 1996; Valiela et al. 1997) that might include different land uses and nutrient inputs. These budgets have been developed with varying efforts at measuring, or modeling, internal processes of nutrient retention and release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber, J.D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends Ecol. Evolut. 7:220–223; 1992.

    CAS  Google Scholar 

  • Aber, J.D.; Magill, A.; Boone, R.; Melillo, J.M.; Steudler, P.; Bowden, R. Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecol. Applic. 3:156–166; 1993.

    Google Scholar 

  • Aber, J.D.; Ollinger, S.V.; Federer, C.A.; Reich, P.B.; Goulden, M.L.; Kicklighter, D.W.; Melillo, J.M.; Lathrop, R.G., Jr. Predicting the effects of climate change on water yield and forest production in the northeastern United States. Clim. Res. 5:207–222; 1995.

    Google Scholar 

  • Adams, M.B.; Angradi, T.R.; Kochenderfer, J.N. Stream water and soil solution response to 5 years of nitrogen and sulfur additions at the Fernow Experimental Forest, West Virginia. For. Ecol. Manage. 95:79–91; 1997.

    Google Scholar 

  • Anderson, D.W. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 5:71–97; 1988.

    Google Scholar 

  • Baron, J.S.; Ojima, D.S.; Holland, E.A.; Parton, W.J. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: Implications for aquatic systems. Biogeochemistry 27:61–82; 1994.

    Google Scholar 

  • Bayley, S.E.; Schindler, D.W. The role of fire in determining stream water chemistry in northern coniferous forests. In: Mooney, H.A.; Medina, E.; Schindler, D.W.; Schulze, E.D.; Walker, B.H., eds. Ecosystem Experiments. SCOPE 45. New York: Wiley; 1991:141–165.

    Google Scholar 

  • Billen, G.; Lancelot, C.; Meybeck, M. N, P, and Si retention along the aquatic continuum from land to ocean. In: Mantoura, R.F.C.; Martin, J.-M.; Wollast, R., eds. Ocean Margin Processes in Global Change. New York: Wiley; 1991:19–44.

    Google Scholar 

  • Binkley, D. The influence of tree species on forest soils: Processes and patterns. In: Mead, D.J.; Cornforth, I.S., eds. Proceedings of the Trees and Soil Workshop. Agronomy Society of New Zealand Special Publication 10. Canterbury, NZ: Lincoln Univ Pr.; 1996:1–33.

    Google Scholar 

  • Binkley, D.; Kimmins, J.P.; Feller, M.C. Water chemistry profiles in an early-and mid-successional forest in coastal British Columbia. Can. J. For. Res. 12:240–248; 1982.

    CAS  Google Scholar 

  • Binkley, D.; Sollins, P.; Bell, R.; Sachs, D.; Myrold, D. Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73:2022–2033; 1992.

    CAS  Google Scholar 

  • Bormann, B.T.; Bormann, EH.; Bowden, W.B.; Pierce, R.S.; Hamburg, S.P.; Wang, D.; Snyder, M.C.; Li, C.Y.; Ingersoll, R.C. Rapid N2 fixation in pines, alder and locust: Evidence from the sandbox ecosystem study. Ecology 74:583–598; 1993.

    Google Scholar 

  • Bormann, F.H.; Bowden, W.B.; Pierce, R.S.; Hamburg, S.P.; Voigt, G.K.; Ingersoll, R.C.; Likens, G.E. The Hubbard Brook sandbox experiment. In: Jordan, W.R.; Gilpin, M.E.; Aber, J.D., eds. Restoration Ecology. Cambridge: Cambridge Univ. Pr.; 1987:251–256.

    Google Scholar 

  • Bollmann, A.; Conrad, R. Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biol. Biochem. 29:1067–1078; 1997.

    CAS  Google Scholar 

  • Bormann, EH.; Likens, G.E.; Melillo, J.M. Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science 196:981–983; 1977.

    PubMed  CAS  Google Scholar 

  • Broadbent, F.E.; Carlton, A.B. Field trials with isotopically labelled nitrogen fertilizer. In: Nielson, D.R.; MacDonald, J.G., eds. Nitrogen in the Environment. New York: Academic; 1978:1–41.

    Google Scholar 

  • Buchmann, N.; Gebauer, G.; Schulze, E.-D. Partitioning of 15N-labeled ammonium and nitrate among soil, litter, below-and above-ground biomass of trees and understory in a 15-year-old Picea abies plantation. Biogeochemistry 33:1–23; 1996.

    Google Scholar 

  • Buchmann, N.; Schulze, E.-D.; Gebauer, G. 15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation. Oecologia 102:361–370; 1995.

    Google Scholar 

  • Burns, D.A. Retention of in an upland stream environment: A mass balance approach. Biogeochemistry 40:73–96; 1998.

    CAS  Google Scholar 

  • Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.E Competition for phosphorus: Differential uptake from dual-isotope-labeled soil interspaces between shrub and grass. Science 229:384–386; 1985.

    PubMed  CAS  Google Scholar 

  • Chorover, J.; Vitousek, P.M.; Everson, D.A.; Esperanza, A.M.; Turner, D. Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26:115–144; 1994.

    CAS  Google Scholar 

  • Christ, M.; Zhang, Y.; Likens, G.E.; Driscoll, C.T. Nitrogen retention capacity of a northern hardwood forest soil under ammonium sulfate additions. Ecol. Applic. 5:802–812; 1995.

    Google Scholar 

  • Christensen, S.; Simkins, S.; Tiedje, J.M. Spatial variation in denitrification: Dependency of activity centers on the soil environment. Soil Sci. Soc. Am. J. 54:1608–1613; 1990.

    CAS  Google Scholar 

  • Currie, W.S.; Aber, J.D.; McDowell, W.H.; Boone, R.D.; Magill, A.H. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35:471–505; 1996.

    Google Scholar 

  • Dawes, W.R.; Hatton, T.J. TOPOG_IRM. 1. Model description. Canberra, Australia: CSIRO, Division of Water Resources, Canberra Laboratory, Institute of Natural Resources and Environment; 1993.

    Google Scholar 

  • Dise, N.B.; Wright, R.F. Nitrogen leaching from European forests in relation to nitrogen deposition. For. Ecol. Manage. 71:153–161; 1995.

    Google Scholar 

  • Dodds, W.K.; Blair, J.M.; Henebry, G.M.; Koelliker, J.K.; Ramundo, R.; Tate, C.M. Nitrogen transport from tallgrass prairie watersheds. J. Environ. Qual. 25:973–981; 1996.

    CAS  Google Scholar 

  • Durka, W.; Schulze, E.-D.; Gebauer, G.; Voerkelius, S. Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–826; 1994.

    CAS  Google Scholar 

  • Emmett, B.A.; Reynolds, B.; Stevens, P.A.; Norris, D.A.; Hughes, S.; Gorres, J.; Lubrecht, I. Nitrate leaching from afforested Welsh catchments: Interactions between stand age and nitrogen deposition. Ambio 22:386–394; 1993.

    Google Scholar 

  • Farrell, R.E.; Sandercock, P.J.; Pennock, D.J.; Van Kessel, C. Landscape-scale variations in leached nitrate: Relationship to denitrification and natural nitrogen-15 abundance. Soil Sci. Soc. Am. J. 60:1410–1415; 1996.

    CAS  Google Scholar 

  • Federer, C.A.; Hornbeck, J.W; Tritton, L.M.; Martin, C.W.; Pierce, R.S.; Smith, C.T. Long term depletion of calcium and other nutrients in eastern US forests. Environ. Manage. 13:593–601; 1989.

    Google Scholar 

  • Fenn, M.E.; Poth, M.A.; Johnson, D.W. Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. For. Ecol. Manage. 82:211–230; 1996.

    Google Scholar 

  • Friedland, A.J.; Miller, E.K.; Battles, J.J.; Thorne, J.F. Nitrogen deposition, distribution and cycling in a sub-alpine spruce-fir forest in the Adirondacks, New York, USA. Biogeochemistry 14:31–55; 1991.

    CAS  Google Scholar 

  • Frink, C.R. Estimating nutrient exports to estuaries. J. Environ. Qual. 20:717–724; 1991.

    CAS  Google Scholar 

  • Gold, A.J.; DeRagon, W.R.; Sullivan, W.M.; Lemunyon, J.L. Nitrate-nitrogen losses to groundwater from rural and suburban land uses. J. Soil Water Conserv. 45:305–310; 1990.

    Google Scholar 

  • Grant, D.; Binkley, D. Rates of free-living nitrogen fixation in some piedmont forest types. For. Sci. 33:548–551; 1987.

    Google Scholar 

  • Grier, C.C. Wildfire effects on nutrient distribution and leaching in a coniferous ecosystem. Can. J. For. Res. 5:599–607; 1975.

    CAS  Google Scholar 

  • Groffman, P.M.; Tiedje, J.M. Denitrification in north temperate forest soils: Relationships between denitrification and environmental factors at the landscape scale. Soil Biol. Biochem. 21:621–626; 1989.

    Google Scholar 

  • Gundersen, P. Nitrogen deposition and leaching in European forests: Preliminary results from a data compilation. Water Air Soil Pollut 85:1179–1184; 1995.

    CAS  Google Scholar 

  • Gundersen, P. Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition. For. Ecol. Manage. 101:251–268; 1998.

    Google Scholar 

  • Gundersen, P.; Rasmussen, L. Nitrogen mobility in a nitrogen limited forest at Klosterhede, Denmark, examined by NH4NO3 addition. For. Ecol. Manage. 71:75–88; 1995.

    Google Scholar 

  • Hart, S.C.; Firestone, M.K.; Paul, E.A.; Smith, J.L. Flow and fate of soil nitrogen in an annual grassland and a young mixed-conifer forest. Soil Biol. Biochem. 25:431–442; 1993.

    Google Scholar 

  • Hedin, L.O.; Armesto, J.J.; Johnson, A.H. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76:493–509; 1995.

    Google Scholar 

  • Hicks, B.B.; Hosker, R.P.J.; Meyers, T.P.; Womack, J.D. Dry deposition inferential techniques. I. Design and tests of a prototype meteorological and chemical system for determining dry deposition. Atmos. Environ. 25A:2345–2359; 1991.

    CAS  Google Scholar 

  • Hicks, B.B.; Weseley, M.L.; Durham, J.L. Critique of Methods to Measure Dry Deposition. EPA-600/9-80-050. Washington, DC: U.S. Environmental Protection Agency (EPA); 1980.

    Google Scholar 

  • Hicks, B.B.; Weseley, M.L.; Lindberg, S.E.; Bromberg, S.M., eds. Proceedings of the Dry Deposition Workshop of the National Acid Precipitation Assessment Program, March 1986. Oak Ridge, TN: NOAA/ ATDD; 1986.

    Google Scholar 

  • Hill, A.R. Nitrate removal in stream riparian zones. J. Environ. Qual. 25:743–755; 1996.

    CAS  Google Scholar 

  • Holmes, R.M.; Jones, J.B.J.; Fisher, S.G.; Grimm, N.B. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146; 1996.

    Google Scholar 

  • Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhao-lang, Z. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139; 1996.

    CAS  Google Scholar 

  • Hultberg, H.; Grennfelt, P. Sulphur and seasalt deposition as reflected by throughfall and runoff chemistry in forested catchments. Environ. Pollut. 755:215–222; 1992.

    Google Scholar 

  • Jaworski, N.A.; Groffman, P.M.; Keller, A.A.; Prager, J.C. Watershed nitrogen and phosphorus balance: Upper Potomac River basin. Estuaries 15:83–95; 1992.

    CAS  Google Scholar 

  • Johnson, D.W. Nitrogen retention in forest soils. J. Environ. Qual. 21:1–12; 1992.

    Google Scholar 

  • Johnson, D.W. Soil properties beneath ceanothus and pine stands in the eastern Sierra Nevada. Soil Sci. Soc. Am. J. 59:918–924; 1995.

    CAS  Google Scholar 

  • Johnson, N.M.; Likens, G.E.; Bormann, F.H.; Pierce, R.S. Rate of chemical weathering of silicate minerals in New Hampshire. Geochim. Cosmochim. Acta 32:531–545; 1968.

    CAS  Google Scholar 

  • Johnson, D.W.; Lindberg, S.E., eds. Atmospheric Deposition and Forest Nutrient Cycling: A Synthesis of the Integrated Forest Study. New York: Springer-Verlag; 1992.

    Google Scholar 

  • Johnson, D.W.; Swank, W.T.; Vose, J.M. Effects of liming on soils and streamwaters in a deciduous forest: Comparison of field results and simulations. J. Environ. Qual. 24:1105–1117; 1995.

    Google Scholar 

  • Johnson, D.W.; Van Hook, R.I., eds. Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed. New York: Springer-Verlag; 1989.

    Google Scholar 

  • Jordan, M.J.; Nadelhoffer, K.J.; Fry, B. Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enriched wastewater. Ecol. Applic. 7:864–881; 1997.

    Google Scholar 

  • Joslin, J.D.; Kelly, J.M.; Van Miegroet, H. Soil chemistry and nutrition of North American spruce-fir stands: Evidence for recent change. J. Environ. Quality 21:12–30; 1992.

    CAS  Google Scholar 

  • Joslin, J.D.; Wolfe, M.H. Red spruce soil solution chemistry and root distribution across a cloud water deposition gradient. Can. J. For. Res. 22:893–904; 1992.

    CAS  Google Scholar 

  • Joye, S.B.; Smith, S.V.; Hollibaugh, J.T.; Paerl, H.W. Estimating denitrification rates in estuarine sediments: A comparison of stoichiometric and acetylene based methods. Biogeochemistry 33:197–215; 1996.

    CAS  Google Scholar 

  • Kahl, J.S.; Norton, S.A.; Fernandez, I.J.; Nadelhoffer, K.J.; Driscoll, C.T.; Aber, J.D. Experimental inducement of nitrogen saturation at the watershed scale. Environ. Sci. Technol. 27:565–568; 1993.

    CAS  Google Scholar 

  • Kapustka, L.A.; Dubois; J.D. Dinitrogen fixation by cyanobacteria and associative rhizosphere bacteria in the Arapaho Prairie in the Sand Hills of Nebraska. Am. J. Bot. 74:107–113; 1987

    CAS  Google Scholar 

  • Kjonaas, O.J.; Stuanes, A.O.; Huse, M. Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gardsjon, Sweden. For. Ecol. Manage. 101:227–250; 1998.

    Google Scholar 

  • Knicker, H., Ludemann, H.-D.; Haider, K. Incorporation studies of during incubation of organic residues by 15N-CPMAS-NMR spectroscopy. Eur. J. Soil Sci. 48:431–441; 1997.

    CAS  Google Scholar 

  • Koopmans, C.J.; Tietema, A.; Boxman, A.W. The fate of 15N enriched throughfall in two coniferous forest stands at different nitrogen deposition levels. Biogeochemistry 34:19–44; 1996.

    CAS  Google Scholar 

  • Lajtha, K.; Jarrell, W.; Johnson, D.W.; Sollins, P. Collection of soil solution. In: Robertson, P.; Coleman, D.; Bledsoe, C.; Sollins, P., eds. Standard Soil Methods for Long-Term Ecological Research. Oxford: Oxford Univ. Pr.; 1999.

    Google Scholar 

  • Lajtha, K.; Seely, B.; Valiela, I. Retention and leaching losses of atmospherically-derived nitrogen in the aggrading coastal watershed of Waquoit Bay, MA. Biogeochemistry 28:33–54; 1995.

    CAS  Google Scholar 

  • LaMontagne, M.G.; Valiela, I. Denitrification measured by a direct N2 flux method in sediments of Waquoit Bay, MA. Biogeochemistry 31:63–83; 1995.

    CAS  Google Scholar 

  • Lepisto, A.; Andersson, L.; Arheimer, B.; Sundblad, K. Influence of catchment characteristics, forestry activities and deposition on nitrogen export from small forested catchments. Water Air Soil Pollut. 84:81–102; 1995.

    Google Scholar 

  • Lindberg, S.E.; Lovett, G.M.; Richter, D.D.; Johnson, D.W. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141–145; 1986.

    PubMed  CAS  Google Scholar 

  • Likens, G.E. An experimental approach for the study of ecosystems. J. Ecol. 73:381–396; 1985.

    Google Scholar 

  • Likens, G.E.; Bormann, F.H. Biogeochemistry of a Forested Ecosystem. New York: Springer-Verlag; 1995.

    Google Scholar 

  • Likens, G.E.; Bormann, F.H.; Pierce, R.S.; Eaton, J.S.; Johnson, N.M. Biogeochemistry of a forested ecosystem. New York: Springer-Verlag; 1977.

    Google Scholar 

  • Likens, G.E.; Bormann, F.H.; Pierce, R.S.; Reiners, W.A. Recovery of a forested ecosystem. Science 199:492–496; 1978.

    PubMed  CAS  Google Scholar 

  • Likens, G.E.; Driscoll, CT.; Buso, D.C. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246; 1996.

    CAS  Google Scholar 

  • Likens, G.; Driscoll, C.; Buso, D.; Siccama, T.; Johnson, C.; Lovett, G.; Ryan, D.; Fahey T.; Reiners, W. The Biogeochemistry of potassium at Hubbard Brook. Biogeochemistry 25:61–125; 1994.

    CAS  Google Scholar 

  • Lindberg, S.E.; Lovett, G.M.; Richter, D.D.; Johnson, D.W. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141–145; 1986.

    PubMed  CAS  Google Scholar 

  • Litaor, M.I. Review of soil solution samplers. Water Resourc. Res. 1988:727–733; 1988.

    Google Scholar 

  • Lovett, G.M.; Bowser, J.J.; Edgerton, E.S. Atmospheric deposition to watersheds in complex terrain. Hydrol. Process. 11:645–654; 1997.

    Google Scholar 

  • Lovett, G.M.; Likens, G.E.; Nolan, S.S. Dry deposition of sulfur to the Hubbard Brook Experimental Forest: A preliminary comparison of methods. In: Swarz, S.E.; Slinn, W.G.N., eds. Precipitation Scavenging and Atmosphere-Surface Exchange. Washington, DC: Hemisphere; 1992:1391–1402.

    Google Scholar 

  • Lovett, G.M.; Lindberg, S.E. Atmospheric deposition and canopy interactions of nitrogen in forests. Can. J. For. Res. 23:1603–1616; 1993.

    CAS  Google Scholar 

  • Lovett, G.M.; Nolan, S.S.; Driscoll, C.T.; Fahey, T.J. Factors regulating throughfall flux in a New Hampshire forested landscape. Can. J. For. Res. 26:2134–2144; 1996.

    Google Scholar 

  • Magill, A.H.; Aber, J.D.; Hendricks, J.J.; Bowden, R.D.; Melillo, J.M.; Steudler, P.A. Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol. Applic. 7:402–4415; 1997.

    Google Scholar 

  • Marques, R.; Ranger, J.; Gelhaye, D.; Pollier, B.; Ponette, Q.; Goedert, O. Comparison of chemical composition of soil solutions collected by zero-tension plate lysimeters with those from ceramic-cup lysimeters in a forest soil. Eur. J. Soil Sci. 47:407–417; 1996.

    CAS  Google Scholar 

  • McDowell, W.H.; Lugo, A.E.; James, A. Export of nutrients and major ions from Caribbean catchments. J. North Am. Benthol. Soc. 14:12–20; 1995.

    Google Scholar 

  • Mead, D.J.; Pritchett, W.L. Fertilizer movement in a slash pine ecosystem. I. Uptake of N and P and N movement in the soil. Plant Soil 43:451–465; 1975.

    Google Scholar 

  • Miller, W.R.; Drever, J.I. Chemical weathering and related controls on surface water chemistry in the Absaroka Mountains, Wyoming. Geochim. Cosmochim. Acta 41:1693–1702; 1977.

    CAS  Google Scholar 

  • Mitchell, M.J.; Burke, M.K.; Shepard, J.P. Seasonal and spatial patterns of S, Ca, and N dynamics of a northern hardwood forest ecosystem. Biogeochemistry 17:165–189; 1992.

    CAS  Google Scholar 

  • Mitchell, M.J.; Driscoll, C.T.; Kahl, J.S.; Likens, G.E.; Murdoch, P.S.; Pardo, L.H. Climatic control of nitrate loss from forested watersheds in the northeast United States. Environ. Sci. Technol. 30:2609–2612; 1996.

    CAS  Google Scholar 

  • Murdoch, P.S.; Stoddard, J.L. The role of nitrate in the acidification of streams in the Catskill Mountains of New York. Water Resourc. Res. 28:2707–2720; 1992.

    CAS  Google Scholar 

  • Nadelhoffer, K.J.; Downs, M.R.; Fry, B. Sinks for 15N-enriched additions to an oak forest and a red pine plantation. Ecol. Applic. 9:72–86; 1999a.

    Google Scholar 

  • Nadelhoffer, K.J.; Downs, M.R.; Fry, B.; Aber, J.D.; Magill, A.H.; Melillo, J.M. The fate of 15N-labelled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301; 1995.

    Google Scholar 

  • Nadelhoffer, K.J.; Downs, M.R.; Fry, B.; Magill, A.; Aber, J. D Controls on N retention and exports in a fertilized watershed. Environ. Monitor. Assess. 55(1):187–210; 1999b.

    CAS  Google Scholar 

  • Nielsen, T.H.; Well, R.; Myrold, D.D. Combination probe for nitrogen-15 soil labeling and sampling of soil atmosphere to measure subsurface denitrification activity. Soil Sci. Soc. Am. J. 61:802; 1997.

    CAS  Google Scholar 

  • Nodvin, S.C.; Van Miegroet, H.; Lindberg, S.E.; Nicholas, N.S.; Johnson, D.W. Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation southern Appalachian watershed. Water Air Soil Pollut. 85:1647–1652; 1995.

    CAS  Google Scholar 

  • Pardo, L.H.; Driscoll, C.T.; Likens, G.E. Patterns of nitrate loss from a chronosequence of clear-cut watersheds. Water Air Soil Pollut. 85:1659–1664; 1995.

    CAS  Google Scholar 

  • Parkin, T.B. Soil microsites as a source of denitrification variability. Soil Sci. Soc. Am. J. 51:1194–1199; 1987.

    CAS  Google Scholar 

  • Preston, C.M.; Mead, D.J. Long-term recovery in the soil profile of 15N from Douglas-fir needles decomposing in the forest floor. Can. J. For. Res. 25:833–837; 1995.

    Google Scholar 

  • Quails, R.G.; Haines, B.L. Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci. Soc. Am. J. 56:578–586; 1992.

    Google Scholar 

  • Quideau, S.A.; Chadwick, O.A.; Wood, H.B. Base cation Biogeochemistry and weathering under oak and pine: A controlled long-term experiment. Biogeochemistry 35:377–397; 1996.

    CAS  Google Scholar 

  • Reinhart, K.G.; Pierce, R.S. Stream-Gaging Stations for Research on Small Watersheds. Agriculture Handbook 268. Washington, DC: U.S.D.A. Forest Service; 1964.

    Google Scholar 

  • Reynolds, R.C.; Johnson, N.M. Chemical weathering in the temperate glacial environment of the Northern Cascade Mountains. Geochim. Cosmochim. Acta 36:537–554; 1972.

    CAS  Google Scholar 

  • Rustad, L.E.; Fernandez, I.J.; David, M.B.; Mitchell, M.J.; Nadelhoffer, K.J.; Fuller, R.B. Experimental soil acidification and recovery at the Bear Brook Watershed in Maine. Soil Sci. Soc. Am. J. 60:1933–1943; 1996.

    CAS  Google Scholar 

  • Rustad, L.E.; Kahl, J.S.; Norton, S.A.; Fernandez, I.J. Underestimation of dry deposition by throughfall in mixed northern hardwood forests. J. Hydrol. 162:319–336; 1994.

    CAS  Google Scholar 

  • Scholefield, D.; Hawkins, J.M.B.; Jackson, S.M. Development of a helium atmosphere soil incubation technique for direct measurement of nitrous oxide and dinitrogen fluxes during denitrification. Soil Biol. Biochem. 29:1345; 1997.

    CAS  Google Scholar 

  • Seely, B.; Lajtha, K. Application of a 15N tracer to simulate and track the fate of atmospherically-deposited N in the coastal forests of the Waquoit Bay Watershed, Cape Cod, MA. Oecologia 112:393–402; 1997.

    Google Scholar 

  • Seely, B.; Lajtha, K.; Salvucci, G. The dynamics of N fluxes from canopy to ground water in a coastal forest ecosystem developed on sandy substrates. Biogeochemistry 42:325–343; 1998.

    CAS  Google Scholar 

  • Seitzinger, S.P.; Nielsen, L.P.; Cafrey, J.; Christensen, P.B. Denitrification measurements in aquatic sediments: A comparison of three methods. Biogeochemistry 23:147–169; 1993.

    CAS  Google Scholar 

  • Semkin, R.G.; Jeffries, D.S.; Clair, T.A. Hydrochemical methods and relationships for study of stream output from small catchments. In: Moldan, B.; Cerny, J., eds. Biogeochemistry of Small Catchments. Chichester, UK: Wiley; 1994:163–187.

    Google Scholar 

  • Shepard, J.P.; Mitchell, M.J.; Scott, T.J.; Zhang, Y.M.; Raynal, D.J. Measurement of wet and dry deposition in a northern hardwood forest. Water Air Soil Pollut 48:225–238; 1989.

    CAS  Google Scholar 

  • Silvester, W.B. Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America. Soil Biol. Biochem. 21:283–289; 1989.

    CAS  Google Scholar 

  • Sollins, P.; McCorison, F.M. Nitrogen and carbon solution chemistry of an old growth coniferous forest watershed before and after cutting. Water Resourc. Res. 17:1409–1418; 1981.

    CAS  Google Scholar 

  • Stams, A.J.M.; Bootlink, H.W.G.; Lutke-Schipholt, I.J.; Beemsterboer, B.; Woittiez, J.R.W.; Van Breemen, N. A field study on the fate of 15N-ammonium to demonstrate nitrification of atmospheric ammonium in an acid forest soil. Biogeochemistry 13:241–255; 1991.

    CAS  Google Scholar 

  • Stoddard, J.L. Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In: Baker, L.A., ed. Environmental Chemistry of Lakes and Reservoirs. Washington, DC American Chemical Society; 1994:223–284.

    Google Scholar 

  • Stohlgren, T.J.; Melack, J.M.; Esperanza, A.M.; Parsons, D.J. Atmospheric deposition and solute export in giant sequoia-mixed conifer watersheds in the Sierra Nevada, California. Biogeochemistry 12:207–230; 1991.

    CAS  Google Scholar 

  • Stottlemyer, R. Monitoring and quality assurance procedures for the study of remote watershed ecosystems. In: Boyle, T.P., ed. New Approaches to Monitoring Aquatic Ecosystems. ASTM STP 940. Philadelphia, PA: American Society for Testing and Materials; 1987:189–198.

    Google Scholar 

  • Stottlemyer, R.; Troendle; C.A. Nutrient concentration patterns in streams draining alpine and subalpine catchments, Fraser Experimental Forest, Colorado. J. Hydrol. 140:179–208; 1992.

    CAS  Google Scholar 

  • Tietema, A.; Emmett, B.A.; Gundersen, P.; Kjonaas, O.J.; Koopmans, C.J. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For. Ecol. Manage. 101:19–28; 1998.

    Google Scholar 

  • Tietema, A.; Verstraten, J.M. Nitrogen cycling in an acid forest ecosystem in the Netherlands under increased atmospheric nitrogen inputs. Biogeochemistry 15:21–46; 1991.

    Google Scholar 

  • Tietema, A.; Wright, R.F.; Blanck, K.; Boxman, A.W.; Bredemeier, M.; Emmett, B.A.; Gundersen, P.; Hultberg, H.; Kjonaas, O.J.; Moldan, F.; Roelofs, J.G.M.; Schleppi, P.; Stuanes, A.O.; Van Breemen, N. NI-TREX: The timing of response of coniferous forest ecosystems to experimentally-changed nitrogen deposition. Water Air Soil Pollut. 85:1623–1628; 1995.

    CAS  Google Scholar 

  • Ulery, A.L.; Graham, R.C.; Chadwick, O.A.; Wood, H.B. Decade-scale changes of soil carbon, nitrogen, and exchangeable cations under chaparral and pine. Geoderma 65:121–134; 1995.

    CAS  Google Scholar 

  • Valiela, I.; Collins, G.; Kremer, J.; Lajtha, K.; Geist, M.; Seely, B.; Brawley, J.; Sham; C.H. Nitrogen loading from coastal watersheds to receiving estuaries: New method and application. Ecol. Applic. 7:358–380; 1997.

    Google Scholar 

  • Van Luijn, F.; Boers, P.C.M.; Lijklema, L. Comparison of denitrification rates in lake sediments obtained by the N2 flux method, the 15N isotope pairing technique and the mass balance approach. Water Res. 30:893–900; 1996.

    Google Scholar 

  • Vitousek, P.M.; Fahey, T.; Johnson, D.W.; Swift, M.J. Element interactions in forest ecosystems: Succession, allometry and input-output budgets. Biogeochemistry 5:7–34; 1988.

    CAS  Google Scholar 

  • Vitousek, P.M.; Reiners, W.A. Ecosystem succession and nutrient retention: A hypothesis. BioScience 25:376–381; 1975.

    CAS  Google Scholar 

  • Waring, R.H.; Schlesinger, W.H. Forest ecosystems: Concepts and management. Orlando, FL: Academic; 1985.

    Google Scholar 

  • White, D.S.; Howes, B.L. Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnol. Oceanogr. 39:1878–1892; 1994.

    Google Scholar 

  • Williams, M.R.; Melack, J.M. Atmospheric deposition, mass balances, and processes regulating streamwater solute concentrations in mixed-conifer catchments of the Sierra Nevada, California. Biogeochemistry 37:111–144; 1997a.

    CAS  Google Scholar 

  • Williams, M.R.; Melack, J.M. Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38:67–102; 1997b.

    CAS  Google Scholar 

  • Young, M.H.; Wierenga, P.J.; Mancino, C.F. Large weighing lysimeter for water use and deep percolation studies. Soil Sci. 161:491; 1996.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lajtha, K. (2000). Ecosystem Nutrient Balance and Dynamics. In: Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W. (eds) Methods in Ecosystem Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1224-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1224-9_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98743-9

  • Online ISBN: 978-1-4612-1224-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics