Advertisement

Reactive Oxygen Species in Clinical Practice

  • Aruna Nathan
  • Mervyn Singer

Abstract

Reactive oxygen species (ROSs) are oxidants produced in both health and disease by various processes, for example, from the phagocytic respiratory burst, during mitochondrial aerobic respiration, and as a by-product of both ischemia and reper-fusion. In health, ROSs serve a variety of roles, including defense, cell signaling, and as a trigger for inflammation (Fig.18.1).A number of endogenous mechanisms are in place to protect the body against excessive oxidant effect, including circulating antioxidants (e.g., albumin) intracellular antioxidants (e.g., reduced glutathione), and specific enzymes (e.g., superoxide dismutase)(Table 18.1).When the equilibrium is grossly disrupted by excess production of oxidants or loss of endogenous defenses, widespread damage can ensue to protein, lipid, DNA, and mitochondria.This damage is implicated in various local or systemic clinical syndromes, such as after reperfusion of an ischemic heart, limb, or bowel, or with acute respiratory distress syndrome (ARDS) or sepsis.

Keywords

Reactive Oxygen Species Nitric Oxide Acute Lung Injury Acute Respiratory Distress Syndrome Xanthine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCord JM, Fridovich I: Superoxide dismutase, an enzymic function of erythrocuprein (hemocuprrein). J Biol Chem 1969; 244: 6049–6055.PubMedGoogle Scholar
  2. 2.
    Koppenol WH: The centennial of the Fenton reaction. Free Radic Biol Med 1993; 15: 645–651.PubMedCrossRefGoogle Scholar
  3. 3.
    Candeias LP, Patel KB, Stratford MRL, Wardman P: Free hydroxyl radicals are formed as reaction between the neutrophil derived species superoxide and hypochlorous acid. FEBS Lett 1993; 333: 151–153.PubMedCrossRefGoogle Scholar
  4. 4.
    Candeias LP, Stratford MRL, Wardman P: Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex. Free Radic Res Commun 1994; 20: 241–249.CrossRefGoogle Scholar
  5. 5.
    Wink DA, Cook J, Pacelli R, et al: The effect of various nitric oxide donors agents on hydrogen peroxide mediated toxicity: a direct correlation between nitric oxide formation and protection. Arch Biochem Biophys 1996; 331: 241–248.PubMedCrossRefGoogle Scholar
  6. 6.
    Pryor WA, Squadrito GL: The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1996; 268: L699–L721.Google Scholar
  7. 7.
    Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB: Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Nad Acad Sci USA 1993; 90: 9813–9817.CrossRefGoogle Scholar
  8. 8.
    Wink DA, Cook JA, Krishna MC, et al: Nitric oxide protects against alkyl peroxide mediated cytotoxicity: further insights into the role nitric oxide plays in oxidative stress. Arch Biochem Biophys 1995; 319: 402–407.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubbo H, Radi R, Trujillo M, et al: Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994; 269: 26068–26075.Google Scholar
  10. 10.
    Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S: Inhibition of low density lipoprotein oxidation by nitric oxide. potential role in atherogenesis. FEBS Lett 1993; 334: 170–174.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorbunov NV, Osipov AN, Day BW, et al: Reduction of ferrylmyoglobin and ferrylhemoglobin by nitric oxide: a protective mechanism against ferryl hemoprotein induced oxidation. Biochemistry 1995; 34: 6689–6699.PubMedCrossRefGoogle Scholar
  12. 12.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA: Apparent hydroxyl radical formation by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.PubMedCrossRefGoogle Scholar
  13. 13.
    Saran M, Michel C, Bors W: Reaction of NO with implications for endothelial injury from nitric oxide and superoxide. Free Radic Res Commun 1990; 10: 221–226.PubMedCrossRefGoogle Scholar
  14. 14.
    Hobbs AJ, Fukuto JM, Ignarro Lf: Formation of free nitric oxide from L-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA 1994; 91: 10992–10996.PubMedCrossRefGoogle Scholar
  15. 15.
    Schmidt HH, Hoffmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M: No NO from NO synthase. Proc Natl Acad Sci USA 1996; 93: 14492–14497.PubMedCrossRefGoogle Scholar
  16. 16.
    Griffith OW, Stuehr DJ: Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995; 57: 707–736.PubMedCrossRefGoogle Scholar
  17. 17.
    Pufahl RA, Wishnock JS, Marietta MA: Hydrogen peroxide supported oxidation of NG-hydroxyl-L-arginine by nitric oxide synthase. Biochemistry 1995; 34: 1930–1941.PubMedCrossRefGoogle Scholar
  18. 18.
    Arnelle DR, Stamler JS: NO+, NO and NOdonation by S: nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and regulation of disulfide formation. Arch Biochem Biophys 1995; 318: 279–285.PubMedCrossRefGoogle Scholar
  19. 19.
    Wink DA, Feelisch M, Fukuto J, et al: The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys 1998; 351: 66–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Gutteridge JMC: Lipid peroxidation and antioxidants as biomark-ers of tissue damage. Clin Chem 1995; 41: 1819–1828.PubMedGoogle Scholar
  21. 21.
    Gutteridge JMC: Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett 1986; 20: 291–295.CrossRefGoogle Scholar
  22. 22.
    Davies KJA: Protein damage and degradation by oxygen radicals.1.General Aspects. J Biol Chem 1987; 262: 9895–9901.PubMedGoogle Scholar
  23. 23.
    Wolff S, Dean RT: Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J 1986; 234: 399–403.PubMedGoogle Scholar
  24. 24.
    Fraticelli A, Serrano CV, Bochner BS, et al: Hydrogen peroxide and superoxide modulate leukocyte adhesion molecule expression and leukocyte endothelial adhesion. Biochem Biophys Acta 1996; 1310: 251–259.PubMedCrossRefGoogle Scholar
  25. 25.
    McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312: 159–163.PubMedCrossRefGoogle Scholar
  26. 26.
    Bone RC: The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457–469.PubMedGoogle Scholar
  27. 27.
    Klebanoff SL: Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 1980; 93: 480–489.PubMedGoogle Scholar
  28. 28.
    Tsukahara Y, Morisaki T, Horita Y, Torisu M: Tanaka M: Expression of inducible nitric oxide synthase in circulating neutrophils of the systemic inflammatory response syndrome and septic patients. World J Surg 1998; 22: 771–777.PubMedCrossRefGoogle Scholar
  29. 29.
    Phan SH, Gannon de, Varani J, et al: Xanthine oxidase activity in rat pulmonary artery endothelial cells and its modulation by activated neutrophils. Am J Pathol 1989; 134: 1201–1211.PubMedGoogle Scholar
  30. 30.
    Friedl HP, Till GO, Ryan US: Mediator induced activation of xanthine oxidase in endothelial cells. FASEB J 1989; 3: 2512–2518.PubMedGoogle Scholar
  31. 31.
    Galley HF, Davies MJ, Webster NR: Xanthine oxidase activity and free radical generation in patients with sepsis syndrome. Crit Care Med 1996; 24: 1649–1653.PubMedCrossRefGoogle Scholar
  32. 32.
    Pascual C, Karzai W, Meier-Hellmann A, et al: A controlled study of leukocyte activation in septic patients. Intensive Care Med 1997; 23: 743–748.PubMedCrossRefGoogle Scholar
  33. 33.
    Morgan RA, Manning PB, Coran AG, et al: Oxygen free radical activity during live E.coliseptic shock in the dog. Circ Shock 1988; 25: 319–323.PubMedGoogle Scholar
  34. 34.
    Kunimoto F, Morita T, Ogawa R, et al: Inhibition of lipid peroxidation improves survival rate of endotoxemic rats. Circ Shock 1987; 21: 15–22.PubMedGoogle Scholar
  35. 35.
    Ogawa R, Kunimoto F, Morita T, et al: Changes in hepatic lipid peroxide concentration in endotoxemic rats. Circ Shock 1982; 9: 369–374.PubMedGoogle Scholar
  36. 36.
    Demling D, LaLonde C, Jin LJ, et al: Endotoxemia causes an increased lung lipid peroxidation in unanesthetised sheep. J Appl Physiol 1986; 60: 2094–2100.PubMedGoogle Scholar
  37. 37.
    Ben Baquali A, Aube H, Maupoil V, et al: Plasma lipid peroxidation in critically ill patients: importance of mechanical ventilation. Free Radic Biol Med 1994; 16: 223–227.CrossRefGoogle Scholar
  38. 38.
    Burton GW, Joyce A, Ingold KU: First proof that vitamin E remains the major lipid soluble chain-breaking antioxidant in human plasma. Lancet 1982; 2: 327.PubMedCrossRefGoogle Scholar
  39. 39.
    Goode HF, Webster NR: Free radicals and trace element metabolism in sepsis and injury. Br J Intensive Care 1992; 2: 312–322.Google Scholar
  40. 40.
    Halliwell B, Gutteridge JMC: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984; 167: 92–98.Google Scholar
  41. 41.
    Krinsky NI: Antioxidant functions of carotenoids. Free Radic Biol Med 1989; 7: 617–635.PubMedCrossRefGoogle Scholar
  42. 42.
    Cross CE, Forte T, Stacker R, et al: Oxidative stress and abnormal cholesterol metabolism in patients with adult respiratory distress syndrome. J Lab Clin Med 1990; 115: 396–404.PubMedGoogle Scholar
  43. 43.
    Richard C, Lemmonier F, Thibbault M, et al: Vitamin E deficiency and lipid peroxidation during the adult respiratory distress syndrome. Crit Care Med 1990; 18: 4–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Bertrand Y, Pincemail J, Hanique G, et al: Differences in tocopherol-lipid ratios in ARDS and non-ARDS patients. Intensive Care Med 1989; 15: 87–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Ogilvie AC, Groenveld ABJ, Straub JP, Thijs LG: Plasma lipid peroxides and antioxidants in human septic shock. Intensive Care Med 1991; 17: 40–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Goode HJ, Cowley HC, Walker BE, et al: Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 1995; 23: 646–651.PubMedCrossRefGoogle Scholar
  47. 47.
    Borelli E, Roux-Lombard P, Grau G, et al: Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med 1996; 24: 392–397.CrossRefGoogle Scholar
  48. 48.
    Dasgupta A, Malhotra D, Levy H, et al: Decreased total antioxidant capacity but normal lipid hydroperoxide concentrations in sera of critically ill patients. Life Sci 1997; 60: 335–340.PubMedCrossRefGoogle Scholar
  49. 49.
    Pascual C, Karzai W, Meier-Hellmann A, et al: Total plasma antioxidant capacity is not always decreased in sepsis. Crit Care Med 1998; 26: 705–709.PubMedCrossRefGoogle Scholar
  50. 50.
    Fukuyama N, Takebayashi Y, Hida M, et al: Clinical evidence of peroxynitrite formation in chronic renal failure patients with septic shock. Free Radic Biol Med 1997; 22: 771–774.PubMedCrossRefGoogle Scholar
  51. 51.
    Hammarqvist F, Luo Jia-Li, Cotgreave IA, et al: Skeletal muscle glutathione is depleted in critically ill patients. Crit Care Med 1997; 25: 78–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Goode HF, Webster N: Antioxidants in intensive care medicine. Clin Intensive Care 1993; 4: 265–269.Google Scholar
  53. 53.
    Goode HF, Webster NR: Free radicals and antioxidants in sepsis. Crit Care Med 1993; 21: 1770–1776.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang H, Spapen H, Nguyen DN, et al: Protective effects of N-acetyl-l-cysteine in endotoxaemia. Am J Physiol 1994; 266: H1746–H1754.PubMedGoogle Scholar
  55. 55.
    Molnar Z, Mackinnon KL, Shearer E, et al: The effect of N-acetylcysteine on total serum antioxidant potential and urinary albumin excretion in critically ill patients. Intensive Care Med 1998; 24: 230–235.PubMedCrossRefGoogle Scholar
  56. 56.
    Galley HF, Howdle PD, Wlaker B, Webster N: The effect of intravenous antioxidants in patients with septic shock. Crit Care Med 1997; 23: 768–774.Google Scholar
  57. 57.
    Galley HF, Davies MJ, Webster N: Ascorbyl radical formation in patients with sepsis: effect of ascorbate loading. Free Radic Biol Med 1996; 20: 139–143.PubMedCrossRefGoogle Scholar
  58. 58.
    Koedel U, Bernatowitcz A, Paul R, et al: Experimental pneumococcal meningitis: cerebrovascular alterations, brain oedema, and meningeal inflammation are linked to the production of nitric oxide. Ann Neurol 1995; 37: 313–323.PubMedCrossRefGoogle Scholar
  59. 59.
    Golenser J, Kamyl M, Tsafack A, et al: Correlation between destruction of malarial parasites by polymorphonuclear leucocytes and oxidative stress. Free Radic Res Commun 1992; 17: 249–262.PubMedCrossRefGoogle Scholar
  60. 60.
    Gordeuk VR, Thuma PE, McLaren C, et al: Transferrin saturation and recovery from coma in cerebral malaria. Blood 1995; 85: 3297–3301.PubMedGoogle Scholar
  61. 61.
    Knobil K, Choi AMK, Weigand G, Jacoby DB: Role of oxidants in influenza virus-induced gene expression. Am J Physiol 1998; 274: L134–L142.PubMedGoogle Scholar
  62. 62.
    Malorni W, Rivabene R, Santini MT, Donelli G: N-Acetylcysteine inhibits apoptosis and decreases viral particles in HIV-chronically infected U937 cells. FEBS Lett 1993; 327: 75–78.PubMedCrossRefGoogle Scholar
  63. 63.
    Liu J, Shigenaga MK, Yan L, et al: Antioxidant activity of diethyldithiocarbamate. Free Radic Res 1996; 24: 461–472.PubMedCrossRefGoogle Scholar
  64. 64.
    Paller MS, Neumann TV: Reactive oxygen species and rat renal epithelial cells during hypoxia and reoxygenation. Kidney int 1991; 40: 1041–1049.PubMedCrossRefGoogle Scholar
  65. 65.
    Yoshida N, Granger DN, Anderson DC, et al: Anoxia-reoxygen-ation induced neutrophil adherence to cultured endothelial cells. Am J Physiol 1992; 262: H1891–H1898.PubMedGoogle Scholar
  66. 66.
    Walker PD, Shah SV: Gentamycin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am J Physiol 1987; 253: C495–C499.PubMedGoogle Scholar
  67. 67.
    Yang CL, Du XH, Han YX: Renal cortical mitochondria are the source of oxygen free radicals enhanced by gentamycin. Ren Fail 1995; 17: 21–26.PubMedCrossRefGoogle Scholar
  68. 68.
    Ueda N, Guidet B, Shah SV: Gentamycin induced mobilisation of iron from renal cortical mitochondria. Am J Physiol 1993; 265: F435–F439.PubMedGoogle Scholar
  69. 69.
    Baliga R, Ueda N, Walker PD, Shah SV: Oxidant mechanisms in toxic acute renal failure. Am J Kidney Dis 1997; 29: 465–477.PubMedCrossRefGoogle Scholar
  70. 70.
    Zager RA: Mitochondrial free radical production induces lipid peroxidation during myohemoglobinuria. Kidney Int 1996; 49: 741–751.PubMedCrossRefGoogle Scholar
  71. 71.
    Zager RA, Burkhart K: Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca, and terminal mitochondrial electron transport. Kidney Int 1997; 51: 728–738.PubMedCrossRefGoogle Scholar
  72. 72.
    Pacelli F, Doglietto GB, Alfieri S, et al: Prognosis in intra-abdomianl infections: multivariate analysis on 604 patients. Arch Surg 1996; 11: 641–646.CrossRefGoogle Scholar
  73. 73.
    Robinson MK, Rustum RR, Chambers EA, et al: Starvation enhances hepatic free radical release following endotoxemia. J Surg Res 1997; 69: 325–330.PubMedCrossRefGoogle Scholar
  74. 74.
    Arthur MJ: Reactive oxygen intermediates and Ever injury. J Hepatol 1988; 6: 125–131.PubMedCrossRefGoogle Scholar
  75. 75.
    Kuo PC, Slivka A: Nitric oxide diminishes oxidant-mediated hepatic injury. J Surg Res 1994; 56: 594–600.PubMedCrossRefGoogle Scholar
  76. 76.
    Shu Z, Jung M, Beger HG, Marzinzig M, et al: pH dependent changes of nitric oxide, peroxynitrite and reactive oxygen species in hepatocellular damage. Am J Physiol 1997; 273: G1118–G1126.PubMedGoogle Scholar
  77. 77.
    Bzeizi KI, Dawkes R, Dodd NJF, et al: Graft dysfunction following liver transplantation: role of free radicals. J Hepatol 1997; 26: 69–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Schoenberg MH, Buchler M, Beger HG: The role of oxygen radicals in experimental acute pancreatitis. Free Radic Biol Med 1992; 12: 515–522.PubMedCrossRefGoogle Scholar
  79. 79.
    Czako L, Tkacs T, Varga I, et al: Involvement of oxygen derived free radicals in l-arginine induced acute pancreatitis. Dig Dis Sci 1998; 43: 1770–1777.PubMedCrossRefGoogle Scholar
  80. 80.
    Quinlan GJ, Evans TW, Gutteridge JMC: Oxidative damage to plasma proteins in adult respiratory distress syndrome. Free Radic Res 1994; 20: 289–298.PubMedCrossRefGoogle Scholar
  81. 81.
    Pacht ER, Timerman AP, Lykens MG, Merola AJ: Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome. Chest 1991; 100: 1397–1403.PubMedCrossRefGoogle Scholar
  82. 82.
    Bunnell E, Paeht ER: Oxidized glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1993; 148: 1174–1178.PubMedCrossRefGoogle Scholar
  83. 83.
    Chabot F, Mitchell JA, Gutteridge JMC, Evans TW: Reactive oxygen species in acute lung injury. Eur Respir J 1998; 11: 745–757.PubMedGoogle Scholar
  84. 84.
    Kooy NW, Royall JA, Ye YZ, et al: Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Grit Care Med 1995; 151: 1250–1254.Google Scholar
  85. 85.
    Smith LJ, Shamsuddin M, Sporn PHS, et al: Reduced superoxide dismutase in lung cells of patients with asthma. Free Radic Biol Med 1997; 22: 1301–1307.PubMedCrossRefGoogle Scholar
  86. 86.
    Vachier I, Chanez P, Doucen CL, et al: Enhancement of reactive oxygen species formation in stable and unstable asthmatic patients. Eur Respir J 1994; 7: 1585–1592.PubMedCrossRefGoogle Scholar
  87. 87.
    Nader-Djalal N, Knight PR III, Thusu K, et al: Reactive oxygen species contribute to oxygen related lung injury after acid aspiration. Anesth Analg 1998; 87: 127–133.PubMedGoogle Scholar
  88. 88.
    Youn Y-K, Lalonde C, Demling R: Oxidants and the pathophysiology of burn and smoke inhalational injury. Free Radic Biol Med 1992; 12: 409–415.PubMedCrossRefGoogle Scholar
  89. 89.
    Williams EA, Quinlan GJ, Goldstraw P, et al: Post operative lung injury and oxidative damage in patients undergoing pulmonary wedge resection. Eur Respir J 1998; 11: 1028–1034.PubMedCrossRefGoogle Scholar
  90. 90.
    Reilly MP, Delanty N, Roy I, et al: Evidence for oxidant stress during acute coronary reperfusion in humans. Circulation 1997; 96: 3314–3320.PubMedCrossRefGoogle Scholar
  91. 91.
    Samaja M, Motterlini R, Santoro F, et al: Oxidative injury in reoxygenated and reperfused hearts. Free Radic Biol Med 1994; 16: 255–262.PubMedCrossRefGoogle Scholar
  92. 92.
    Richard V, Kaeffer N, Thuillez C: Delayed protection of the ischemic heart: from pathophysiology to therapeutic applications. Fundam Clin Pharmacol 1996; 10: 409–415.PubMedCrossRefGoogle Scholar
  93. 93.
    Messent M, Sinclair DG, Quinlan GJ, et al: Pulmonary vascular permeability after cardiopulmonary bypass and its relationship to oxidative stress. Crit Care Med 1997; 25: 425–429.PubMedCrossRefGoogle Scholar
  94. 94.
    Zweier JL, Kuppusamy P, Thompson-Gorman S, et al: Measurement and characterisation of free radical generation in reoxygenated human endothelial cells. Am J Physiol 1994; 266: C700–C708.PubMedGoogle Scholar
  95. 95.
    Bacon PJ, Love SA, Gupta AK: Plasma antioxidant consumption with ischemia/reperfusion during carotidendarterectomy. Stroke 1996; 27: 1808–1811.PubMedCrossRefGoogle Scholar
  96. 96.
    Spranger M, Krempien S, Schwab S, et al: Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury: correlation with clinical course and infarct size. Stroke 1997; 28: 2425–2428.PubMedCrossRefGoogle Scholar
  97. 97.
    Thompson MM, Nasim A, Sayers RD, et al: Oxygen freeradica and cytokine generation during endovascular and conventional aneurysm repair. Eur J Vase Endovasc Surg 1996; 12: 70–75.CrossRefGoogle Scholar
  98. 98.
    Spark JI, Chetter IC, Gallavin L, et al: Reduced total antioxidant capacity predicts ischemia reperfusion injury after femoro-distal bypass. Br J Surg 1998; 85: 217–220.CrossRefGoogle Scholar
  99. 99.
    Kretzschmar M, Klein U, Palutke M, Schirrmeister W: Reduction of ischemia reperfusion syndrome after abdominal aortic aneu-rysmectomy by N-acetylcysteine but not mannitol. Acta Ana-esthesiol Scand 1996; 40: 657–664.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Aruna Nathan
  • Mervyn Singer

There are no affiliations available

Personalised recommendations