Confidence intervals for a tail index estimator

  • Sergei Y. Novak
Part of the Lecture Notes in Statistics book series (LNS, volume 147)

Abstract

Financial data (log-returns of exchange rates, stock indices, share prices) are often modeled by heavy-tailed distributions, i.e., distributions which admit the representation
$$P(X > x) = L(x){x^{ - 1/a}}(a > 0)$$
(14.1)
where the function L slowly varies: \(\mathop {\lim }\limits_{x \to \infty } L(xt)/L(x) = 1(\forall t > 0)\).

Keywords

E171 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bradley, R. (1986). Basic properties of strong mixing condition, in E. Eberlein and M.S. Taqqu (eds), Dependence in Probability and Statistics, Boston: Birkhäuser, pp. 165–192.Google Scholar
  2. Csörgö, S. and Viharos, L. (1998). Asymptotic Methods in Probability and Statistics, Elsevier, chapter Estimating the tail index, pp. 833–881.Google Scholar
  3. Davis, R., Mikosch, T. and Basrak, B. (1999). Sample acf of multivariate stochastic recurrence equations with applications to garch, Technical report, University of Groningen, Department of Mathematics.Google Scholar
  4. de Haan, L. and Peng, L. (1998). Comparison of tail index estimators, Statistica Neerlandica 52(1): 60–70.MathSciNetMATHCrossRefGoogle Scholar
  5. Drees, H. (1999). Weighted approximations of tail processes under mixing conditions, Technical report, University of Cologne.Google Scholar
  6. Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, Springer Verlag.Google Scholar
  7. Hsing, T. (1991). On tail index estimation for dependent data, 19(3): 1547–1569.MathSciNetMATHGoogle Scholar
  8. Novak, S. (1996). On the distribution of the ratio of sums of random variables, Theory Probab. Appl. 41(3): 479–503.MathSciNetMATHCrossRefGoogle Scholar
  9. Novak, S. (1998). Berry-esseen inequalities for a ratio of sums of random variables, Technical Report 98, University of Sussex.Google Scholar
  10. Novak, S. and Utev, S. (1990). On the asymptotic distribution of the ratio of sums of random variables, Siberian Math. J. 31: 781–788.MathSciNetMATHCrossRefGoogle Scholar
  11. Resnick, S. (1997). Heavy tail modeling and teletraffic data, Ann. Statist. 25(5): 1805–1869.MathSciNetMATHCrossRefGoogle Scholar
  12. Resnick, S. and Starica, C. (1998). Tail index estimation for dependent data, Ann. Appl. Probab. 8(4): 1156–1183.MathSciNetMATHCrossRefGoogle Scholar
  13. Utev, S. (1989). Sums of ϕ-mixing random variables, Technical report, Trudy Inst. Mat. (Novosibirsk).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Sergei Y. Novak

There are no affiliations available

Personalised recommendations