Advertisement

Tricks of the Trade: Relating and Deriving Solvable and Integrable Dynamical Systems

  • Francesco Calogero
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

A heuristic/pedagogical presentation of various tricks that can be used to relate different solvable and integrable dynamical systems to each other, hence also to derive new ones from known ones. Several examples are exhibited.

Keywords

Nonlinear Evolution Equation Toda Lattice Integrable Hamiltonian System Toda System Integrable Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adler, Some finite-dimensional integrable systems and their scattering behavior, Commun. Math. Phys. 55 (1977), No. 3, 195–230.ADSMATHCrossRefGoogle Scholar
  2. 2.
    M. Bruschi and F. Calogero, The Lax representation for an integrable class of relativistic dynamical systems, Commun. Math. Phys. 109 (1987), No. 3, 481–492.MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419–436.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    F. Calogero, Exactly solvable one-dimensional many-body problems, Lett. Nuovo Cimento 13 (1975), No. 11, 411–416.MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Calogero, A sequence of Lax matrices or certain integrable Hamiltonian systems, Lett. Nuovo Cimento 16 (1976), No. 1, 22–24.MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Calogero, Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related “solvable” many-body problems, Nuovo. Cimento 43B (1978), No. 2, 177–241.MathSciNetADSGoogle Scholar
  7. 7.
    F. Calogero, Why are certain nonlinear PDEs both widely applicable and integrable?, What Is Integrability? (V. E. Zakharov, ed.), Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, pp. 1–62.CrossRefGoogle Scholar
  8. 8.
    F. Calogero, Remarks on certain integrable one-dimensional many-body problems, Phys. Lett. A 183 (1993), No. 1, 85–88.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F. Calogero, A solvable N-body problem in the plane. I, J. Math. Phys. 37 (1996), No. 4, 1735–1759.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    F. Calogero, A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic, J. Math. Phys. 38 (1997), No. 11, 5711–5719.MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    F. Calogero, Three solvable many-body problems in the plane, Acta Appl. Math. 51 (1998), No. 1, 93–111.MathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Calogero and W. Eckhaus, Nonlinear evolution equations, rescal-ings, model PDEs and their integrability. I, Inverse Problems 3 (1987), No. 1, 229–262.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    F. Calogero, Nonlinear evolution equations, rescalings, model PDEs and their integrability. II, Inverse Problems 4 (1988), No. 2, 11–33.ADSMATHCrossRefGoogle Scholar
  14. 14.
    F. Calogero and J.-P. Françoise, Integrable dynamical systems obtained by duplication, Ann. Inst. Henri Poincaré A 57 (1992), No. 2, 167–181.MATHGoogle Scholar
  15. 15.
    H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B 9 (1974), 1924–1925.MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    H. Flaschka, The Toda lattice. II. Inverse-scattering solution, Progr. Theor. Phys. 51 (1974), 703–716.MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968), 467–490.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems, Sov. Phys.-JETP 40 (1974), No. 2, 269–274.MathSciNetADSGoogle Scholar
  19. 19.
    J. Moser, Three integrable Hamiltonian systems connected to isospec-tral deformations, Adv. Math. 16 (1975), 197–220.ADSMATHCrossRefGoogle Scholar
  20. 20.
    A. M. Perelomov, The simple relation between certain dynamical systems, Commun. Math. Phys. 63 (1978), No. 1, 9–11.MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    S. N. M. Ruijsenaars, Systems of Calogero-Moser type, Particles and Fields (Banff, 1994) (G. Semenoff and L. Vinet, eds.), CRM Series in Mathematical Physics, Springer, New York, 1999, pp. 251–352.CrossRefGoogle Scholar
  22. 22.
    S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170 (1986), No. 2, 370–405.MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    B. Sutherland, Exact results for a quantum many-body problem in one dimension, Phys. Rev. A 4 (1971), 2019–2021.ADSCrossRefGoogle Scholar
  24. 24.
    B. Sutherland, Exact results for a quantum many-body problem in one dimension. II, Phys. Rev. A 5 (1972), 1372–1376.ADSCrossRefGoogle Scholar
  25. 25.
    M. Toda, One-dimensional dual transformation, J. Phys. Soc. Japan 20 (1967), 2095.Google Scholar
  26. 26.
    M. Toda, Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 20 (1967), 431–435.ADSGoogle Scholar
  27. 27.
    M. Toda, Theory of Nonlinear Lattices, Springer Ser. Solid-State Sci., Vol. 20, Springer, Berlin, 1981.Google Scholar
  28. 28.
    R. I. Yamilov, Classification of Toda-type scalar lattices, Nonlinear Evolution Equations and Dynamical Systems NEEDS’ 92 (Dubna, 1992) (V. Makhankov, I. Puzynin, and O. Pashaev, eds.), World Scientific, River Edge, NJ, 1993, pp. 423–431.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Francesco Calogero

There are no affiliations available

Personalised recommendations