Skip to main content

R-Matrices, Generalized Inverses, and Calogero—Moser—Sutherland Models

  • Chapter
Calogero—Moser— Sutherland Models

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 724 Accesses

Abstract

Four results are given that address the existence, ambiguities, and construction of a classical R-matrix given a Lax pair. They enable the uniform construction of R-matrices in terms of any generalized inverse of ad(L). For generic L a generalized inverse (and indeed the Moore-Penrose inverse) is explicitly constructed. The R-matrices are in general momentum dependent and dynamical. We apply our construction to the elliptic Calogero-Moser-Sutherland models associated with gln.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts in Math., Vol. 60, Springer, New York, 1978.

    Google Scholar 

  2. J. Avan, O. Babelon, and M. Talon, Construction of the classical R-matrices for the Toda and Calogero models, Algebra i Analiz 6 (1994), No. 2, 67–89.

    MathSciNet  Google Scholar 

  3. J. Avan and M. Talon, Classical R-matrix structure for the Calogero model, Phys. Lett. B 303 (1993), No. 1-2, 33–37.

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Babelon and C. M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. B 237 (1990), No. 3-4, 411–416.

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Krieger, Huntington, NY, 1980.

    MATH  Google Scholar 

  6. H. W. Braden, R-matrices and generalized inverses, J. Phys. A 30 (1997), No. 15, L485–L493, q-alg/9706001, solv-int/9706001.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. W. Braden, The equation A T X — XTA = B, SIAM J. Matrix Anal. Appl 20 (1999), No. 2, 295–302, Edinburgh preprint MS-97-007.

    Article  MathSciNet  Google Scholar 

  8. H. W. Braden and V. M. Buchstaber, The general analytic solution of a functional equation of addition type, SIAM J. Math. Anal. 28 (1997), No. 4, 903–923.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. W. Braden and V. M. Buchstaber, Integrable systems with pairwise interactions and functional equations, Reviews in Mathematics and Mathematical Physics (to appear).

    Google Scholar 

  10. H. W. Braden, E. Corrigan, P. E. Dorey, and R. Sasaki, Affine Toda field theory and exact S-matrices, Nucl. Phys. B 338 (1990), No. 3, 689–746.

    Article  MathSciNet  ADS  Google Scholar 

  11. H. W. Braden and A. N. W. Hone, Affine Toda solitons and systems of Calogero-Moser type, Phys. Lett. B 380 (1996), No. 3-4, 296–302.

    Article  MathSciNet  ADS  Google Scholar 

  12. H. W. Braden and R. Sasaki, The Ruijsenaars-Schneider model, Progr. Theor. Phys. 97 (1997), No. 6, 1003–1017, hep-th/9702182.

    Article  MathSciNet  ADS  Google Scholar 

  13. H. W. Braden and T. Suzuki, R-matrices for elliptic Calogero-Moser models, Lett. Math. Phys. 30 (1994), No. 2, 147–158, hep-th/9309033.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. V. M. Buchstaber and A. M. Perelomov, On the functional equation related to the quantum three-body problem. Contemporary Mathematical Physics (A. B. Sossinsky, ed.), Amer. Math. Soc. Transi. Ser. 2, Vol. 175, Amer. Math. Soc, Providence RI, 1996, pp. 15–34.

    Google Scholar 

  15. F. Calogero, One-dimensional many-body problems with pair interactions whose ground-state wavefunction is of product type, Lett. Nuovo Cimento 13 (1975), 507–511.

    Article  Google Scholar 

  16. F. Calogero, On a functional equation connected with integrable many-body problems, Lett. Nuovo Cimento 16 (1976), No. 3, 77–80.

    Article  MathSciNet  Google Scholar 

  17. S. R. Caradus, Generalized Inverses and Operator Theory, Queen’s Papers in Pure and Appl. Math., Vol. 50, Queen’s Univ., Kingston, ON, 1978.

    Google Scholar 

  18. L. A. Ferreira and D. I. Olive, Noncompact symmetric spaces and the Toda molecule equations, Commun. Math. Phys. 99 (1985), No. 3, 365–384.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. T. N. E. Greville, Some applications of the pseudoinverse of a matrix, SIAM Rev. 2 (1960), 15–22.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T. Hollowood, Quantizing sl(n) solitons and the Hecke algebra, Internat. J. Modern Phys. A 8 (1993), No. 5, 947–981.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Commun. Pure Appl. Math. 31 (1978), No. 4, 481–507.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. M. Krichever and A. Zabrodin, Spin generalization of the Ruijse-naars-Schneider model, non-Abelian 2D Toda chain and representations of Sklyanin algebra, Russian Math. Surveys 50 (1995), No. 6, 1101–1150, hep-th/9505039.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. V. B. Kuznetsov, F. W. Nijhoff, and E. K. Sklyanin, Separation of variables for the Ruijsenaars system, Commun. Math. Phys. 189 (1997), No. 3, 855–877, solv-int/9701004.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Liouville, Note sur l’integration des équations différentielles de la dynamique, J. Math. Pures Appl. 20 (1855), 137–138.

    Google Scholar 

  25. D. I. Olive, N. Turok, and J. W. R. Underwood, Affine Toda solitons and vertex operators, Nucl. Phys. B 409 (1993), No. 3, 509–546.

    Article  MathSciNet  ADS  Google Scholar 

  26. M. A. Olshanetsky and A. M. Perelomov, Completely integrable Hamiltonian systems connected with semisimple Lie algebras, Invent. Math. 37 (1976), No. 2, 93–108.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. A. Olshanetsky and A. M. Perelomov, Classical integrable finite-dimensional systems related to Lie algebras, Phys. Rep. 71 (1981), No. 5, 313–400.

    Article  MathSciNet  ADS  Google Scholar 

  28. R. M. Pringle and A. A. Rayner, Generalized Inverse Matrices with Applications to Statistics, Griffin’s Statist. Monogr. Courses, Hafner Publishing Co., New York, 1971.

    Google Scholar 

  29. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applications, Wiley, New York-London-Sidney, 1971.

    MATH  Google Scholar 

  30. S. N. M. Ruijsenaars, Systems of Calogero-Moser type, Particles and Fields (Banff, 1994) (G. Semenoff and L. Vinet, eds.), CRM Series in Mathematical Physics, Springer, New York, 1999, pp. 251–352.

    Chapter  Google Scholar 

  31. S. N. M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Phys. (NY) 170 (1986), No. 2, 370–405.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. A. Semenov-Tian-Shansky, What a classical r-matrix is, Funct. Anal. Appl. 17 (1983), No. 4, 259–272.

    Article  Google Scholar 

  33. E. K. Sklyanin, Dynamic r-matrices for the elliptic Calogero-Moser model, St. Petersburg Math. J. 6 (1995), No. 2, 397–406.

    MathSciNet  Google Scholar 

  34. E. K. Sklyanin, Separation of variables—new trends, Quantum Field Theory, Integrable Models and Beyond (Kyoto, 1994) (T. Inami and R. Sasaki, eds.), Progr. Theoret. Phys. Suppl., Vol. 118, Progr. Theoret. Phys., Kyoto, 1995, pp. 35–60.

    Google Scholar 

  35. B. Sutherland, Exact results for a quantum many-body problem in one dimension, Phys. Rev. A 4 (1971), 2019–2021.

    Article  ADS  Google Scholar 

  36. B. Sutherland, Exact results for a quantum many-body problem in one dimension. II, Phys. Rev. A 5 (1972), 1372–1376.

    Article  ADS  Google Scholar 

  37. B. Sutherland, Exact ground-state wave function for a one-dimensional plasma, Phys. Rev. Lett. 34 (1975), 1083–1085.

    Article  ADS  Google Scholar 

  38. V. S. Varadarajan, Lie Groups, Lie Algebras, and their Representa-tions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Engle-wood Cliffs, NJ, 1974.

    Google Scholar 

  39. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1927.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braden, H.W. (2000). R-Matrices, Generalized Inverses, and Calogero—Moser—Sutherland Models. In: van Diejen, J.F., Vinet, L. (eds) Calogero—Moser— Sutherland Models. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1206-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1206-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7043-0

  • Online ISBN: 978-1-4612-1206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics