Advertisement

Yangian Gelfand—Zetlin Bases, glN-Jack Polynomials, and Computation of Dynamical Correlation Functions in the Spin Calogero—Sutherland Model

  • Denis Uglov
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We consider the gl N -invariant Calogero—Sutherland models with N = 1, 2, 3, … in the framework of symmetric polynomials. The Hamiltonian of any such model admits a distinguished orthogonal eigenbasis characterized as the union of Yangian Gelfand—Zetlin bases of irreducible components with respect to the Yangian action on the space of states. We construct an isomorphism from the space of states into the space of symmetric Laurent polynomials that maps the eigenbasis into the basis of gl N - Jack polynomials. These polynomials are defined as specializations of Macdonald polynomials where both parameters approach an Nth primitive root of unity. As an application of this isomorphism we compute two-point dynamical spin-density and density correlation functions in the gl 2-invariant Calogero-Sutherland model at integer values of the coupling constant.

Keywords

Symmetric Polynomial Laurent Polynomial Macdonald Polynomial Jack Polynomial Density Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Baker and P. J. Forrester, Nonsymmetric Jack polynomials and integral kernels, Duke Math. J. 95 (1998), No. 1, 1–50, q-alg/9612003.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, Yang-Baxter equation in long-range interacting systems, J. Phys. A 26 (1993), No. 20, 5219–5236, hep-th/9301084.MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    I. Cherednik, Integration of quantum many-body problems by affine Knizhnik-Zamolodchikov equations, Adv. Math. 106 (1994), No. 1, 65–95.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. 141 (1995), No. 1, 191–216.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    I. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices (1995), No. 10, 483–515.Google Scholar
  6. 6.
    I. V. Cherednik, A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), No. 2, 563–577.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20 (1986), No. 1, 62–64.MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. G. Drinfeld, Quantum groups, Proc. International Congress of Mathematicians (Berkeley, CA, 1986) (A. M. Gleason, ed.), Amer. Math. Soc, Providence, RI, 1987, pp. 798–820.Google Scholar
  9. 9.
    V. G. Drinfeld, A new realization of Yangians and quantum affine algebras, Soviet Math. Dokl. 36 (1988), No. 2, 212–216.MathSciNetGoogle Scholar
  10. 10.
    Z. N. C. Ha, Exact dynamical correlation functions of Calogero-Suth-erland model and one-dimensional fractional statistics, Phys. Rev. Lett. 73 (1994), No. 13, 1574–1577.ADSCrossRefGoogle Scholar
  11. 11.
    Z. N. C. Ha, Fractional statistics in one dimension: view from an exactly solvable model, Nucl. Phys. B 435 (1995), No. 3, 604–636.ADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Jimbo and T. Miwa, Solitons and infinite-dimensional Lie algebras, Pubi. Res. Inst. Math. Sci. 19 (1983), No. 3, 943–1001.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras, Adv. Ser. Math. Phys., Vol. 2, World Sci. Publishing Co., Inc.&#201E; Teaneck, NJ, 1987.Google Scholar
  14. 14.
    Y. Kato, Green function of the Sutherland model with SU(2) internal symmetry, preprint.Google Scholar
  15. 15.
    F. Lesage, V. Pasquier, and D. Serban, Dynamical correlation functions in the Calogero-Sutherland model, Nucl. Phys. B 435 (1995), No. 3, 585–603.MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.Google Scholar
  17. 17.
    I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Séminaire Bourbaki. Vol. 1994/95, Astérisque, Vol. 237, Soc. Math. France, Paris, 1996, pp. 189–207.Google Scholar
  18. 18.
    M. Nazarov and V. Tarasov, Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math. 496 (1998), 181–212.MathSciNetMATHGoogle Scholar
  19. 19.
    K. Takemura and D. Uglov, The orthogonal eigenbasis and norms of eigenvectors in the spin Calogero-Sutherland model, J. Phys. A 1997(30), No. 10, 3685–3717, solv-int/9611006.Google Scholar
  20. 20.
    D. Uglov, Yangian Gelfand-Zetlin bases, gl N-Jack polynomials and computation of dynamical correlation functions in the spin Calogero-Sutherland model, Commun. Math. Phys. 191 (1998), No. 3, 663–696.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Denis Uglov

There are no affiliations available

Personalised recommendations