Advertisement

The Quantized Knizhnik—Zamolodchikov Equation in Tensor Products of Irreducible sl2-Modules

  • E. Mukhin
  • A. Varchenko
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We consider the quantized Knizhnik—Zamolodchikov difference equation (qKZ) with values in a tensor product of irreducible sl2-modules, the equation defined in terms of rational R-matrices. We solve the equation in terms of multidimensional q-hypergeometric integrals. We identify the space of solutions of the qKZ equation with the tensor product of the corresponding modules over the quantum group U q sl2. We compute the monodromy of the qKZ equation in terms of the trigonometric R-matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Chari and A. Pressley, A Guide to Quantum Groups, Cambrige Univ. Press, Cambridge, 1994.MATHGoogle Scholar
  2. 2.
    G. Felder, Conformai field theory and integrable systems associated to elliptic curves, Proc. International Congress of Mathematicians (Zürich, 1994) (S. D. Chatterji, ed.), Birkhäuser, Basel, 1994, pp. 1247–1255, hep-th/9407154.Google Scholar
  3. 3.
    Elliptic quantum groups, Xlth International Congress of Mathematical Physics (Paris, 1994) (D. Iagolnitzer, ed.), Internat. Press, Cambridge, MA, 1995, pp. 211–218.Google Scholar
  4. 4.
    G. Felder, V. O. Tarasov, and A. N. Varchenko, Monodromy of solutions of the elliptic quantum Knizhnik-Zamolodchikov-Bernard difference equation, q-alg/9705017.Google Scholar
  5. 5.
    Solutions of the elliptic qKZB equations and Bethe ansatz. I, Topics in Singularity Theory: V. I. Arnold’s 60th Anniversary Collection (A. Khovanskii, A. Varchenko, and V. Vassiliev, eds.), Amer. Math. Soc. Transi. Ser. 2, Vol. 180, Amer. Math. Soc, Providence, RI, 1997, pp. 45–76, q-alg/9606005.Google Scholar
  6. 6.
    I. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holo-nomic difference equations, Commun. Math. Phys. 146 (1992), No. 1, 1–60.MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models, CBMS Regioal Conf. Ser. in Math., Vol. 85, Conf. Board Math. Sci., Washington, DC, 1995.Google Scholar
  8. 8.
    P. P. Kulish, N. Yu. Reshetikhin, and E. K. Sklyanin, Yang-Baxter equation and representation theory. I, Lett. Math. Phys. 5 (1981), No. 5, 393–403.MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Adv. Ser. Math. Phys., World Sci. Pubi., River Edge, NJ, 1992.Google Scholar
  10. 10.
    V. O. Tarasov, Irreducible monodromy matrices for the R-matrix of the XXZ-model and lattice local Hamiltonians, Theoret, and Math. Phys. 63 (1985), No. 2, 440–454.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    V. O. Tarasov and A. N. Varchenko, Geometry of q-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math. 128 (1997), No. 3, 501–588.MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    Geometry of q-Hypergeometric Functions, Quantum Affine Algebras and Elliptic Quantum Groups, Astérisque, Vol. 246, Soc. Math. Prance, Paris, 1997, q-alg/9703044.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • E. Mukhin
  • A. Varchenko

There are no affiliations available

Personalised recommendations