Diabetic Vascular Disease: Biochemical and Molecular Perspectives

  • Khurram Kamal
  • Robert Chang
  • Bauer E. Sumpio


The discovery of insulin in 1921 heralded a major change in the natural history of diabetes mellitus. Chronic complications of diabetes mellitus, relatively uncommon before this time, began to emerge as a main source of mortality and morbidity in diabetic patients. Diabetes mellitus imparts end-organ damage in many tissues including kidney, skin, nerve, retina, and heart.1 Vascular disease is a characteristic pathological feature of diabetes associated with all of the major chronic complications of diabetes mellitus. The development of diabetic angiopathy is a slow process exacerbated by chronic hyperglycemia and many other metabolic abnormalities in patients with diabetes.


Glomerular Basement Membrane Proliferative Diabetic Retinopathy Nicotinamide Adenine Dinucleotide Elevated Glucose Chronic Complication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nathan DM. Long term complications of diabetes mellitus. N Engl J Med. 1993;328:1676–1684.PubMedCrossRefGoogle Scholar
  2. 2.
    Harris M, Hadden WC, Knowles WC, Bennett PH. Prevalence of diabetes and impaired glucose tolerance and glucose levels in the US population aged 20–40 years. Diabetes. 1987;36:523–534.PubMedCrossRefGoogle Scholar
  3. 3.
    Krolewski AS, Warram JH, Freire MBS. Epidemiology of late diabetic complications: a basis for development and evaluation of preventive programs. Endocrinol Metab Clin North Am. 1996;25:217–242.PubMedCrossRefGoogle Scholar
  4. 4.
    Skyler JS. Diabetic complications: the importance of glucose control. Endocrinol Metab Clin North Am. 1996;25:243–254.PubMedCrossRefGoogle Scholar
  5. 5.
    Greene DA, Lattimer SA, Sima AAF. Sorbitol, phospho-inositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987;316:599–606.PubMedCrossRefGoogle Scholar
  6. 6.
    Williamson JR, Chang K, Frangos M. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993;42:801–813.PubMedCrossRefGoogle Scholar
  7. 7.
    Greene DA, Sima AFA, Stevens MJ, Feldman EL, Lattimer SA. Complications: neuropathy, pathogenetic considerations. Diabetes Care. 1992;15:1902–1925.PubMedCrossRefGoogle Scholar
  8. 8.
    Barnett PA, Gonzalez RG, Chylack LT, Chen H-M. The effect of oxidation on sorbitol pathway kinetics. Diabetes. 1986;35:426–432.PubMedCrossRefGoogle Scholar
  9. 9.
    Asahine T, Kashiwagi A, Nishio Y, et al. Impaired activation of glucose oxidation and NADPH supply in human en-dothelial cells exposed to H2O2 in high glucose medium. Diabetes. 1995;44:520–526.CrossRefGoogle Scholar
  10. 10.
    Hawthrone GC, Bartlett K, Hetherington CS, Alberti KGMM. The effect of high glucose on the polyol pathway activity and myoinositol metabolism in cultured endothelial cells. Diabetologia. 1989;32:163–166.CrossRefGoogle Scholar
  11. 11.
    Lorenzi M, Toledo S. Myoinositol enhances the proliferation of human endothelial cells in culture but fails to prevent the delay induced by high glucose. Metabolism. 1986;35:824–829.PubMedCrossRefGoogle Scholar
  12. 12.
    Wakasugi M, Noguchi T, Inoue M, Tawata M, Shindo H, Onaya T. Effect of aldose reductase inhibitors on prostacy-clin synthesis by aortic ring from rats with streptozotocin-induced diabetes. Prostaglandins Leukot Essent Fatty Acids. 1991;44:233–236.PubMedCrossRefGoogle Scholar
  13. 13.
    Tesfamariam B, Cohen R. Role of sorbitol and myoinositol in the endothelial cell dysfunction caused by elevated glucose [abstract]. Federation Proceedings. 1990;4.Google Scholar
  14. 14.
    Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995;9:484–496.PubMedGoogle Scholar
  15. 15.
    Shiba T, Inoguchi T, Sportman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol. 1993;265(suppl):E783–E793.PubMedGoogle Scholar
  16. 16.
    Inoguchi T, Batten R, Handler E, Sportman JR, Heath W, King GL. Preferential elevation of protein kinase C iso-form beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A. 1992;89:11059–11063.PubMedCrossRefGoogle Scholar
  17. 17.
    Ayo SH, Radnik R, Garoni JA, Troyer DA, Kriesberg JI. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell culture. Am J Physiol. 1992;261(suppl):F571–F577.Google Scholar
  18. 18.
    Williams B, Schrier RW. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes. 1993;41:1464–1472.CrossRefGoogle Scholar
  19. 19.
    Dunlop M, Larkins RG. Pancreatic islet synthesize phos-pholipid de novo from glucose via acyldihydroxy acetone phosphate. Biochem Biophys Res Commun. 1985;132:467–473.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee TS, Saltman KA, Ohashi H, King GL. Activation of protein kinase C by elevation of glucose concentration: proposal for a mechanism in the diabetic vascular complications. Proc Natl Acad Sci U S A. 1989;86:5141–5145.PubMedCrossRefGoogle Scholar
  21. 21.
    King GL, Kunisaki M, Nisho Y, Inoguchi T, Shiba T, Xia P. Biochemical and molecular mechanisms in the development of diabetic complications. Diabetes. 1996;45(suppl 3):S105–S108.PubMedGoogle Scholar
  22. 22.
    Kreisberg JI, Garoni J, Radnik R, Ayo S. High glucose and TGF beta 1 stimulate fibronectin gene expression through a cAMP response element. Kidney Int. 1994;46:1019–1024.PubMedCrossRefGoogle Scholar
  23. 23.
    Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunction in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272:728–731.PubMedCrossRefGoogle Scholar
  24. 24.
    Kunisaki M, Bursell S, Umeda F, Nawata H, King GL. Normalization of diacylglycerol-protein kinase c activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose. Diabetes. 1994;43:1372–1377.PubMedCrossRefGoogle Scholar
  25. 25.
    Vlassara H, Bucala R. Advanced glycation and diabetes complications: an update. In: Marshall SM, Home PD, Rizza RA, eds. The Diabetes Annual. 9th ed. Amsterdam: El-sevier Science; 1995:227–244.Google Scholar
  26. 26.
    Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified protein is distinct from previously described scavenger receptors. J Exp Med. 1986;164:1301–1309.PubMedCrossRefGoogle Scholar
  27. 27.
    Brett J, Schmitt AM, Zou YS, et al. Tissue distribution of the receptor for advanced glycation end products (RAGE): expression in smooth muscle, cardiac myocyte, and neural tissue in addition to vascular tissue. Am J Pathol. 1993;143:1699–1712.PubMedGoogle Scholar
  28. 28.
    Vlassara H, Bucala R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end product receptors. Diabetes. 1996;45(suppl 3): S65–S66.PubMedGoogle Scholar
  29. 29.
    Makita Z, Bucala R, Rayfield EJ, et al. Diabetic-uremic serum advanced glycosylation end products are chemically reactive and resistant to dialysis therapy. Lancet. 1994;343:1519–1522.PubMedCrossRefGoogle Scholar
  30. 30.
    Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A. 1993;90:6434–6438.PubMedCrossRefGoogle Scholar
  31. 31.
    Yan S-D, Schmidt A-M, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889–9897.PubMedGoogle Scholar
  32. 32.
    Collins T. Endothelial nuclear factor kB and initiation of atherosclerosis. Lab Invest. 1993;68:499–508.PubMedGoogle Scholar
  33. 33.
    Schmidt A-M, Hori O, Chen JX, et al. Advanced glycation endproducts interacting with their receptors induce expression of vascular cell adhesion molecule-1 (VCAM-I) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy in diabetes. J Clin Invest. 1995;96:1395–1403.PubMedCrossRefGoogle Scholar
  34. 34.
    Esposito C, Gerlach H, Brett J, Stern D, Vlassara H. Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med. 1989;170:1387–1407.PubMedCrossRefGoogle Scholar
  35. 35.
    Kirstein M, Brett J, Radoff S, Ogawa S, Stern D, Vlassara H. Advanced glycosylation induces the transendothelial human monocyte chemotaxis and secretion of PDGF: role in vascular disease in diabetes and aging. Proc Natl Acad Sci U S A. 1990;87:9010–9014.PubMedCrossRefGoogle Scholar
  36. 36.
    Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-I induced by glucose modified proteins: role in normal tissue remodeling. Science. 1988;240:1546–1548.PubMedCrossRefGoogle Scholar
  37. 37.
    Kent MJC, Light ND, Bailey AJ. Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation. Biochem J. 1985;225:745–752.PubMedGoogle Scholar
  38. 38.
    Lubec G, Pollak A. Reduced susceptibility of non enzymatically glucosylated glomerular basement membrane to protease: is thickening of glomerular membrane due to reduced proteolytic degradation? Renal Physiol. 1980;3:4–8.PubMedGoogle Scholar
  39. 39.
    Brownlee M, Vlassara H, Cerami A. Non enzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985;34:938–941.PubMedCrossRefGoogle Scholar
  40. 40.
    Brownlee M, Ponger S, Cerami A. Covalent attachment of soluble protein by non enzymatically glycosylated collagen: a role in the in situ formation of immune complex. J Exp Med. 1983;158:1739.PubMedCrossRefGoogle Scholar
  41. 41.
    Hammes H-P, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A. 1991;88:11555–11558.PubMedCrossRefGoogle Scholar
  42. 42.
    Soulis-Liparota T, Cooper M, Papazoglou D, Clark B, Jerum G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rats. Diabetes. 1991;40:1328–1334.PubMedCrossRefGoogle Scholar
  43. 43.
    Halliwell B. Free radical, antioxidant, and human disease: curiosity, cause, or consequence? Lancet. 1994;344:721–724.PubMedCrossRefGoogle Scholar
  44. 44.
    Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1991;49:481–493.Google Scholar
  45. 45.
    Hunt JV, Dean DT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation: glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J. 1988;256:205–212.PubMedGoogle Scholar
  46. 46.
    Giugliano D, Paolisso G, Ceriello A. Oxidative stress and diabetic vascular disease. Diabetes Care. 1996;19:257–267.PubMedCrossRefGoogle Scholar
  47. 47.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implication for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–1624.PubMedCrossRefGoogle Scholar
  48. 48.
    Tesfamariam B, Cohen RA. Free radical mediate endothelial dysfunction caused by elevated glucose. Am J Physiol. 1992;263(suppl):H321–H326.PubMedGoogle Scholar
  49. 49.
    Curcio F, Ceriello A. Decreased cultured endothelial proliferation in high glucose medium is reversed by antioxidants: new insights on the pathophysiological mechanisms of diabetic vascular complications. In Vitro Cell Dev Biol. 1992;28:787–790.CrossRefGoogle Scholar
  50. 50.
    Curcio F, Pegoraro I, Dello Russo P, Fallen E, Perella F, Ceriello A. Sod and GSH inhibit the high glucose-induced oxidative damage and the PDGF increased secretion in cultured human endothelial cells. Thromb Haemost. 1995;74:969–973.PubMedGoogle Scholar
  51. 51.
    Andersen JL, Rasmussen LM, Ledet T. Diabetic angiopathy and atherosclerosis. Diabetes. 1996;45(suppl 3):S91–S94.Google Scholar
  52. 52.
    Pyorala K, Laasko M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 1987;3:463–524.PubMedCrossRefGoogle Scholar
  53. 53.
    Jarret RJ. Cardiovascular disease and hypertension in diabetes mellitus. Diabetes Metab Rev. 1989;5:547–558.CrossRefGoogle Scholar
  54. 54.
    Gensler SW, Haimovici H, Hoffert P, Steinman C, Ben-eventano TC. Study of vascular lesion in diabetic and non diabetic patients. Arch Surg. 1965;91:6l7–622.CrossRefGoogle Scholar
  55. 55.
    Barret-Connor E, Khow KT. Diabetes mellitus: an independent risk factor for stroke? Am J Epidemiol. 1988;128:116–123.Google Scholar
  56. 56.
    Beach KW, Bedford GR, Bergelin RO, et al. Progression of lower-extremity arterial occlusive disease in type II diabetes mellitus. Diabetes Care. 1988;11:464–472.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim DK, Escalante DA, Garber AJ. Prevention of atherosclerosis in diabetes: emphasis on treatment for the abnormal lipoprotein metabolism. Clin Ther. 1993;15:766–778.PubMedGoogle Scholar
  58. 58.
    Laakso M. Epidemiology of diabetic dyslipidaemia. Diabetes Rev. 1995;3:408–422.Google Scholar
  59. 59.
    Chait A, Brunzell JD. Diabetes, lipids, and atherosclerosis. In: LeRoith D, Taylor SI, Olefsky JM, eds. Diabetes Mellitus. Philadelphia, Pa: Lippincott-Raven Publishers; 1996:772–780.Google Scholar
  60. 60.
    Barakat HA, Carpenter JW, Mclendon VD, et al. Influence of obesity, impaired glucose tolerance, and NIDDM on LDL structure and composition: possible link between hy-perinsulinemia and atherosclerosis. Diabetes. 1990;39:1527–1533.PubMedCrossRefGoogle Scholar
  61. 61.
    Haffner SM. Lipoprotein (a) and diabetes: an update. Diabetes Care. 1993;6:835–840.CrossRefGoogle Scholar
  62. 62.
    Chriestlieb AR, Warram JH, Krolewski AS, et al. Hypertension, the major risk factor in juvenile-onset insulin dependent diabetes. Diabetes. 1981;30(suppl 2):90–96.Google Scholar
  63. 63.
    Brazilay J, Warram JH, Bak M, Laffel LM, Canessa M, Krolewski AS. Predisposition to hypertension: a risk factor for nephropathy and hypertension. Kidney Int. 1992;41:723–730.CrossRefGoogle Scholar
  64. 64.
    West KM, Ahuja MMS, Bennett PH, et al. The role of circulating glucose and triglyceride concentration and their interaction with other “risk factors” as determinant of arterial disease in nine population samples from WHO multinational study. Diabetes Care. 1983;6:361–369.PubMedCrossRefGoogle Scholar
  65. 65.
    Morrish NJ, Stevens LK, Head J, Fuller JH, Jarrett RJ, Keen H. A prospective study of mortality among middle-aged diabetic patients. The London cohort of the WHO multinational study of vascular disease in diabetics, II: associated risk factors. Diabetologia. 1990;33:542–548.PubMedCrossRefGoogle Scholar
  66. 66.
    Fontbonne A, Charles MA, Thibult N, et al. Hyperinsuline-mia as a predictor of coronary heart disease mortality in a healthy population: the Paris prospective study, 15-year follow-up. Diabetologia. 1991;34:356–361.PubMedCrossRefGoogle Scholar
  67. 67.
    Modan M, Or J, Karasik A, et al. Hyperinsulinemia, sex, and risk of atherosclerotic cardiovascular disease. Circulaion. 1991;84:1165–1175.CrossRefGoogle Scholar
  68. 68.
    Ferrara A, Barret-Connor E, Edelstein SL. Hyperinsulinemia does not increase the risk of fatal cardiovascular disease in elderly men or women without diabetes: the Rancho Bernardo study, 1984 to 1991. Am J Epidemiol. 1994;140:857–869.PubMedGoogle Scholar
  69. 69.
    Ferrannini E, Haffner SM, Mitchell BD, Stern MR Hyperinsulinemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia. 1991;34:416–422.PubMedCrossRefGoogle Scholar
  70. 70.
    Clarke R, Daly L, Robinson K, et al. Hyperhomocysteine-mia: an independent risk factor for vascular disease. N Engl J Med. 1991;324:1149–1155.PubMedCrossRefGoogle Scholar
  71. 71.
    Boers GHJ. Hyperhomocysteinemia as a risk factor for arterial and venous disease: a review of evidence and relevance. Thromb. Haemost. 1997;78:520–522.PubMedGoogle Scholar
  72. 72.
    Munshi MN, Stone A, Fink L, Fonseca V. Hyperhomocysteinemia following a methionine load in patients with non-insulin dependent diabetes mellitus and macrovascular disease. Metabolism. 1996;45:133–135.PubMedCrossRefGoogle Scholar
  73. 73.
    Araki A, Sako Y, Ito H. Plasma homocysteine concentration in Japanese patients with non-insulin dependent diabetes mellitus: effect of parental methylcobalamin treatment. Atherosclerosis. 1993;103:149–157.PubMedCrossRefGoogle Scholar
  74. 74.
    LaCroix AZ, Lang J, Scherr P, et al. Smoking and mortality among older men and women in three populations. N Engl J Med. 1991;324:1619–1625.PubMedCrossRefGoogle Scholar
  75. 75.
    Palumbo PJ, O’Fallen WM, Osmundson PJ, Zimmerman BR, Langworthy AL, Kazmier FJ. Progression of peripheral occlusive arterial disease in diabetes mellitus: what factors are predictive? Arch Intern Med. 1991;151:717–721.PubMedCrossRefGoogle Scholar
  76. 76.
    Blann AD, McCollum CN. Adverse influence of cigarette smoking on the endothelium. Thromb Haemost. 1993;70:707–711.PubMedGoogle Scholar
  77. 77.
    Kimura S, Nishinaga M, Ozawa T, Schimada K. Thrombin generation as an acute effect of cigarette smoking. Am Heart J. 1994;28:7–11.CrossRefGoogle Scholar
  78. 78.
    Freeman DJ, Griffin BA, Murray E, et al. Smoking and plasma lipoproteins in man: effects on low density lipoprotein cholesterol levels and high density lipoprotein sub-fraction distribution. Eur J Clin Invest. 1993;23:630–640.PubMedCrossRefGoogle Scholar
  79. 79.
    Clinton K, Libby P. Cytokinins and growth factors in atherogenesis. Arch Pathol Lab Med. 1992;116:1292–1300.PubMedGoogle Scholar
  80. 80.
    Basha JB, Sower JR. Atherosclerosis: an update. Am Heart J. 1995;131:1192–1202.CrossRefGoogle Scholar
  81. 81.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–809.PubMedCrossRefGoogle Scholar
  82. 82.
    Curtiss LK, Witzum JL. Plasma apolipoproteins AI, AII, B, CI, and C are glycosylated in hyperglycemic diabetic patients. Diabetes. 1985;34:452–461.PubMedCrossRefGoogle Scholar
  83. 83.
    Bucala R, Makita Z, Vega G, et al. Modification of low density lipoprotein by advanced glycation end products contribute to the dyslipidemia of diabetes and renal insufficiency. Proc Natl Acad Sci U S A. 1994;263:2893–2898.Google Scholar
  84. 84.
    Ginsberg HN. Lipoprotein physiology in non diabetic and diabetic states: relationship to atherogenesis. Diabetes Care. 1991;14:839–855.PubMedCrossRefGoogle Scholar
  85. 85.
    Lopes-Virella MF, Klein RL, Lyon TJ, Stevenson HC, Witztum JL. Glycosylation of low density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophage. Diabetes. 1988;37:550–557.PubMedCrossRefGoogle Scholar
  86. 86.
    Witzum JL, Fisher M, Pietro T, Steinbrecher UP, Elam RL. Non enzymatic glycosylation of high density lipoprotein accelerates its catabolism in guinea pigs. Diabetes. 1982;31:1029–1032.CrossRefGoogle Scholar
  87. 87.
    Duell PB, Oram JF, Beirman EL. Non enzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes. 1991;40:377–384.PubMedCrossRefGoogle Scholar
  88. 88.
    Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994;43:1010–1014.PubMedCrossRefGoogle Scholar
  89. 89.
    Cushing SD, Berliner JA, Valente AJ, et al. Minimal modified low density lipoprotein induces monocyte chemotactic protein I in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1987;84:2955–2958.Google Scholar
  90. 90.
    Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte-endothelial interactions. J Clin Invest. 1990;85:1260–1266.PubMedCrossRefGoogle Scholar
  91. 91.
    Drake TA, Hannani K, Fei HH, Lavi S, Berliner JA. Minimally oxidized LDL induces tissue factor expression in cultured human endothelial cells. Am J Pathol. 1991;138:601–607.PubMedGoogle Scholar
  92. 92.
    Chait A, Brazg RL, Tribble DL, Krauss RM. Susceptibility of small, dense low density lipoprotein to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B. Am J Med. 1993;94:350–356.PubMedCrossRefGoogle Scholar
  93. 93.
    Lopes-Virella MF, Virella G. Cytokines, modified lipoproteins, and arteriosclerosis in diabetes. Diabetes. 1996;45(suppl 3):S40–S45.PubMedGoogle Scholar
  94. 94.
    Witztum JL, Steinbrecher UP, Kesaniemi YA, Fisher M. Autoantibody to glycosylated protein in the plasma of patient with diabetes mellitus. Proc Natl Acad Sci U S A. 1984;81:3204–3208.PubMedCrossRefGoogle Scholar
  95. 95.
    Lopes-Virella M, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes. 1992;41(suppl 2): 86–91.PubMedGoogle Scholar
  96. 96.
    Gisinger C, Virella GT, Lopes-Virella M. Erythrocyte-bound low density lipoprotein (LDL) immune complex leads to cholesteryl ester accumulation in human monocyte derived macrophage. Clin Immunol Immunopathol. 1991;59:37–52.PubMedCrossRefGoogle Scholar
  97. 97.
    Virella G, Munoz JF, Galbraith GM, Gissinger C, Chassereau C, Lopes-Virella MF. Activation of human monocyte-derived macrophage by immune complex containing low density lipoprotein. Clin Immunol Immunopathol. 1995;75:179–189.PubMedCrossRefGoogle Scholar
  98. 98.
    Lorenzi M, Cagleiro E, Toledo S. Glucose toxicity for human endothelial cells in culture. Diabetes. 1985;34:621–627.PubMedCrossRefGoogle Scholar
  99. 99.
    Kamal K, Mills I, Sumpio BE. Proliferation of immortalized human dermal microvascular endothelial cells is inhibited by elevated glucose. FASEBJ. 1995;9:A872.Google Scholar
  100. 100.
    Sharma NIC, Gardiner TA, Archer DB. A morphologic and autoradiographic study of cell death and regeneration in the retinal microvasculature of normal and diabetic rats. Am J Ophthalmol. 1985;100:51–60.PubMedGoogle Scholar
  101. 101.
    Lorenzi M, Cagliero E. Pathobiology of endothelial and other vascular cells in diabetes mellitus. Diabetes. 1991;40:653–659.PubMedCrossRefGoogle Scholar
  102. 102.
    Lorenzi M, Monstisano DF, Toledo S, Barrieux A. High glucose induced DNA damage in cultured human endothelial cells. J Clin Invest. 1986;77:322–325.PubMedCrossRefGoogle Scholar
  103. 103.
    Cagliero E, Roth T, Roys S, Lorenzi M. Characteristics and mechanisms of high glucose induced overexpression of basement membrane component in cultured human endothelial cells. Diabetes. 1991;40:102–110.PubMedCrossRefGoogle Scholar
  104. 104.
    Mascardo RN. The effect of hyperglycemia on the directed migration of wounded endothelial cell monolayer. Metabolism. 1988;37:102–110.CrossRefGoogle Scholar
  105. 105.
    Roth T, Podesta F, Stepp MA, Boeri D, Lorenzi M. Integrin overexpression induced by high glucose and human diabetes: potential pathway to cell dysfunction in diabetic angiopathy. Proc Natl Acad Sci U S A. 1993;90:9640–9644.PubMedCrossRefGoogle Scholar
  106. 106.
    Jialal I, Crettaz M, Hachiya HL, et al. Characterization of the receptors for insulin and insulin-like growth factors on micro-and macrovascular tissue. Endocrinolgy. 1985;117:1222–1229.CrossRefGoogle Scholar
  107. 107.
    Wallum BJ, Taborsky GJJr, Porte D Jr. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Invest. 1987;64:190–194.Google Scholar
  108. 108.
    King GL, Goodman AD, Bunzey S, Moses A, Kahn CR. Receptors and growth-promoting effect of insulin and insulin-like growth factor on cells from bovine retinal capillaries and aorta. J Clin Invest. 1985;75:1028–1036.PubMedCrossRefGoogle Scholar
  109. 109.
    Sages H. Collagens of basement membranes. J Invest Dermatol. 1982;79(suppl 1):51S–59S.CrossRefGoogle Scholar
  110. 110.
    Faucet DW. A Textbook of Histology. 12th ed. New York, NY: Chapman & Hall; 1994.Google Scholar
  111. 111.
    Reddi AS. The basement membrane in diabetes. In: Marshall SM, Home PD, Rizza RA, eds. The Diabetes Annual. Amsterdam: Elsevier Science; 1995:245–263.Google Scholar
  112. 112.
    William JR, Tilton RG, Chang K, Kilo C. Basement membrane abnormalities in diabetes mellitus: relationship to clinical microangiopathy. Diabetes Metab Rev. 1988;4:339–370.CrossRefGoogle Scholar
  113. 113.
    Vernier RL, Steffes MW, Sisson-Ross S, Mauer SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type I diabetes mellitus. Kidney Int. 1992;41:1070–1080.PubMedCrossRefGoogle Scholar
  114. 114.
    Shimomura H, Spiro RG. Studies on macromolecular component of human glomerular basement membrane and alteration in diabetes: decreased levels of heparan sulfate proteoglycan and laminin. Diabetes. 1987;36:374–381.PubMedCrossRefGoogle Scholar
  115. 115.
    Ziyadeh FN. Renal tubular basement membrane and collagen type IV in diabetes mellitus. Kidney Int. 1993;43:114–120.PubMedCrossRefGoogle Scholar
  116. 116.
    Rasmussen LM, Ledet T. Aortic collagen alteration in human diabetes mellitus: changes in basement membrane collagen content and susceptibility to total collagen to cyanogen bromide solubilization. Diabetologia. 1993;36:445–453.PubMedCrossRefGoogle Scholar
  117. 117.
    Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318:1315–1321.PubMedCrossRefGoogle Scholar
  118. 118.
    Ellis EN, Good BH. Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism. 1991;40:1016–1019.PubMedCrossRefGoogle Scholar
  119. 119.
    Engerman RL, Kern TS, Garment MB. Capillary basement membrane in retina, kidney, and muscle of diabetic dogs and galactosemic dogs and its response to 5 years of aldose reductase inhibition. J Diabetes Complications. 1993;7:241–245.PubMedCrossRefGoogle Scholar
  120. 120.
    Ayo SH, Radnick RA, Glass WF, et al. Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high glucose medium. Am J Physiol. 1991;260(suppl): F185–F191.PubMedGoogle Scholar
  121. 121.
    Pauletto P, Sarzani R, Rappelli A, Chiavegato A, Pessina AC, Sartore S. Differentiation and growth of vascular smooth muscle in experimental hypertension. Am J Hypertens. 1994;121:4–11.Google Scholar
  122. 122.
    Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;327:231–226.CrossRefGoogle Scholar
  123. 123.
    Natarajan R, Gonzalez N, Xu L, Nadler JL. Vascular smooth muscle cell exhibit increased growth in response to elevated glucose. Biochem Biophys Res Commun. 1992;187:552–560.PubMedCrossRefGoogle Scholar
  124. 124.
    Alipui C, Ramos K, Tenner TE Jr. Alteration of rabbit aortic smooth muscle cell proliferation in diabetes mellitus. Cardiovasc Res. 1993;27:1229–1232.PubMedCrossRefGoogle Scholar
  125. 125.
    Bornfeldt KE, Arnqvist HJ, Capron L. In vivo proliferation of rat vascular smooth muscle in relation to diabetes mellitus, insulin-like growth factor-I, and insulin. Diabetologia. 1992;35:104–108.PubMedCrossRefGoogle Scholar
  126. 126.
    Weidmann P, Beretta-Piccoli C, Trost BN. Pressor factors and responsiveness in hypertension accompanying diabetes mellitus. Hypertension. 1985;7(suppl 7):II33–II42.PubMedCrossRefGoogle Scholar
  127. 127.
    Drury PL, Smith GM, Ferris JB. Increased vasopressor responsiveness to angiotensin II in type I (insulin-dependent) diabetic patients without complications. Diabetologia. 1983;27:174–179.Google Scholar
  128. 128.
    Veirhapper H. Effect of exogenous insulin on blood pressure regulation in healthy diabetic subjects. Hypertension. 1985;7(suppl 2):II49–II53.CrossRefGoogle Scholar
  129. 129.
    Yagi S, Takata S, Kiyokawa H. Effect of insulin on vasocon-strictive response to norepinephrine and angiotensin II in rabbit femoral artery and vein. Diabetes. 1988;37:1064–1067.PubMedCrossRefGoogle Scholar
  130. 130.
    Standley PR, Zhang F, Ram JL, Zemel MB, Sower JR. Insulin attenuates vasopressin induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells. J Clin Invest. 1991;88:1230–1236.PubMedCrossRefGoogle Scholar
  131. 131.
    Saito F, Hori MT, Fittengoff M, Hino T, Tuck ML. Insulin attenuates agonist-mediated calcium mobilization in cultured rat smooth muscle cells. J Clin Invest. 1993;92:1161–1167.PubMedCrossRefGoogle Scholar
  132. 132.
    Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelial-derived vasoconstrictor prostanoid in rabbit aorta. J Clin Invest. 1990;85:929–932.PubMedCrossRefGoogle Scholar
  133. 133.
    Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs the endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991;87:1643–1648.CrossRefGoogle Scholar
  134. 134.
    Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Physiol. 1989;26(suppl):H1327–H1333.Google Scholar
  135. 135.
    McMillen MA, Sumpio BE. Endothelins: polyfunctional cytokines. J Am Coll Surg. 1995;180:621–637.PubMedGoogle Scholar
  136. 136.
    Takahashi K, Ghatei MA, Lam H-C, O’Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990;33:306–310.PubMedCrossRefGoogle Scholar
  137. 137.
    Yamauchi T, Ohnaka K, Takayanagi R, Umeda F, Nawata H. Enhanced secretion of endothelin-I by elevated glucose levels from cultured bovine aortic endothelial cells. FEBS Lett. 1990;267:16–18.PubMedCrossRefGoogle Scholar
  138. 138.
    Hu R-M, Levin ER, Pedram A, Frank HJL. Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes. 1993;42:351–358.PubMedCrossRefGoogle Scholar
  139. 139.
    Oliver FJ, deRubia G, Feener EP, et al. Stimulation of endothelin-I gene expression by insulin in endothelial cells. J Biol Chem. 1991;266:23251–23256.PubMedGoogle Scholar
  140. 140.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329:2002–2012.PubMedCrossRefGoogle Scholar
  141. 141.
    Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyper-glycemia. Exp Physiol. 1997;82:432–452.Google Scholar
  142. 142.
    Sobrevia L, Nadal A, Yudilevich DL, Mann GE. Activation of L-arginine transport (system y+) and nitric oxide syn-thetase by elevated glucose and insulin in human endothelial cells. J Physiol. 1996;490:775–781.PubMedGoogle Scholar
  143. 143.
    Scherrer U, Randin D, Vollenweider P, Nicod P. Nitric oxide release account for insulin’s vascular effect in humans. J Clin Invest. 1994;94:2511–2515.PubMedCrossRefGoogle Scholar
  144. 144.
    Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest. 1991;87:432–438.PubMedCrossRefGoogle Scholar
  145. 145.
    Corbett JA, Tilton RG, Chang K, et al. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992;41:552–556.PubMedCrossRefGoogle Scholar
  146. 146.
    Cunha-Vaz J, De Abreu JRE, Compos AJ, Figo GM. Early breakdown of the blood-brain barrier in diabetes. Br J Ophthalmol. 1975;59:649–656.PubMedCrossRefGoogle Scholar
  147. 147.
    Mogenesen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356–360.CrossRefGoogle Scholar
  148. 148.
    Yamaji T, Fukuhara T, Kinoshita M. Increased capillary permeability to albuminuria in diabetic rat myocardium. Circ Res. 1993;72:947–957.PubMedCrossRefGoogle Scholar
  149. 149.
    Kubota I, Fukuhara T, Kinoshita M. Permeability of small coronary arteries and myocardial injury in hypertensive diabetic rats. Int J Cardiol. 1990;29:349–355.PubMedCrossRefGoogle Scholar
  150. 150.
    White NH, Waltman SR, Krupin T, Santiago JV. Reversal of abnormalities in ocular fluorophotometry in insulin-dependent diabetes after five to nine months of improved metabolic control. Diabetes. 1982;31:80–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Yamashita T, Mimura K, Umeda F, Kobayashi K, Hashimoto T, Nawata H. Increased transendothelial permeation of albumin by high glucose concentration. Metabolism. 1995;6:739–744.CrossRefGoogle Scholar
  152. 152.
    Chakrabarti S, Prasher S, Sima AA. Augmented polyol pathway activity and retinal pigmented epithelial permeability in the diabetic BB rats. Diabetes Res Clin Pract. 1990;8:1–11.PubMedCrossRefGoogle Scholar
  153. 153.
    Williamson JR, Chang K, Rowold E, et al. Sorbinol prevents diabetes-induced increases in vascular permeability but does not alter collagen cross-linking. Diabetes. 1985;34:703–705.PubMedCrossRefGoogle Scholar
  154. 154.
    Daniels BS, Hauser EB. Glycation of albumin, not glomerular basement membrane, alters permeability in an in vitro model. Diabetes. 1992;41:1415–1421.PubMedCrossRefGoogle Scholar
  155. 155.
    Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complication. Proc Natl AcadSä U S A. 1992;89:12043–12047.CrossRefGoogle Scholar
  156. 156.
    Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest. 1990;85:1991–1998.PubMedCrossRefGoogle Scholar
  157. 157.
    Williams B. Factors regulating the expression of vascular permeability/vascular endothelial growth factor by human vascular tissue. Diabetologia. 1997;40(suppl):S118–S120.PubMedCrossRefGoogle Scholar
  158. 158.
    Tooke JE. Microvascular function in human diabetes. Diabetes. 1995;44:721–726.PubMedCrossRefGoogle Scholar
  159. 159.
    Parving H-H, Viberti GC, Keen H, Christiansen JS, Lassen NA. Hemodynamic factor in the genesis of diabetic microangiopathy. Metabolism Clinical and Experimental. 1983;32:943–949.PubMedCrossRefGoogle Scholar
  160. 160.
    Rayman G, Williams SA, Spencer PD, Smaje LH, Wise PH, Tooke JE. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. BMJ. 1986;292:1295–1298.PubMedCrossRefGoogle Scholar
  161. 161.
    Parving H-H, Kastrup H, Smidt UM, Andersen AR, Feldt-Rasmussen B, Christiansen JS. Impaired autoregulation of glomerular filtration rate in type I (insulin-dependent) diabetic patients with nephropathy. Diabetologia. 1984;27:247–252.CrossRefGoogle Scholar
  162. 162.
    Sandeman DD, Shore AC, Tooke JE. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992;327:760–764.PubMedCrossRefGoogle Scholar
  163. 163.
    Tooke JE, Sandeman DD, Shore AC. Microvascular hemo-dynamics in hypertension and diabetes. J Cardiovasc Pharmacol. 1991;18(suppl 2):S51–S53.PubMedGoogle Scholar
  164. 164.
    Lowe GDO. Blood viscosity and cardiovascular disease. Thromb Haemost. 1992;67:494–498.PubMedGoogle Scholar
  165. 165.
    Fowkes FGR, Pell JP, Donnan PT, et al. Sex difference in susceptibility to etiologic factors for peripheral atherosclerosis: importance of plasma f ibrinogen and blood viscosity. Arterioscler Thromb. 1994;14:862–868.PubMedCrossRefGoogle Scholar
  166. 166.
    Smith WC, Lowe GDO, Lee AJ, Tunstall-Pedoe H. Rheological determinant of blood pressure in a Scottish adult population. J Hypertens. 1992;10:467–472.PubMedCrossRefGoogle Scholar
  167. 167.
    Lowe GDO, Fowkes FGR, Dawes J, Donnan PT, Lennie SE, Housley E. Blood viscosity, f ibrinogen, and activation of coagulation and leukocyte in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation. 1993;87:1915–1920.PubMedCrossRefGoogle Scholar
  168. 168.
    Memeh CU. Difference between plasma viscosity and protein of type I and type II diabetic Africans in early phases of diabetes. Horm Metab Res. 1993;25:21–23.PubMedCrossRefGoogle Scholar
  169. 169.
    Zioupos P, Barbenel JC, Lowe GDO, MacRury S. Foot microcirculation and blood rheology in diabetes. J Biomed Eng. 1993;15:155–158.PubMedCrossRefGoogle Scholar
  170. 170.
    Brown CD, Zhao Z-H, Berweck S, Chan S, Friedman EA. Effect of alloxan-induced diabetes in hemorheology in rabbits. Horm Metab Res. 1992;24:254–257.PubMedCrossRefGoogle Scholar
  171. 171.
    Schut NH, Van Arkel EC, Hardeman MR, Bilo HJ, Michels RP, Vreeken J. Blood and plasma viscosity in diabetes: possible contribution to late organ complications? Diabetes Res. 1992;19:31–35.PubMedGoogle Scholar
  172. 172.
    McMillian DE. Plasma protein changes, blood viscosity, and diabetic microangiopathy. Diabetes. 1976;25:858–864.Google Scholar
  173. 173.
    Reid HL, Memeh CU. Abnormal serum protein profile in African diabetics. Med Sci Res. 1990;18:321–322.Google Scholar
  174. 174.
    MacRury SM, Lowe GDO. Blood rheology in diabetes mellitus. Diabetes Med. 1990;7:285–291.CrossRefGoogle Scholar
  175. 175.
    McMillian DE, Utterback NG, LaPuma J. Reduced eryth-rocyte deformability in diabetes. Diabetes. 1978;27:895–901.Google Scholar
  176. 176.
    MacRury SM, Small M, Andersen J, MacCuish AC, Lowe GD. Evaluation of red cell deformability by a filtration method in type I and type II diabetes with and without vascular complications. Diabetes Res. 1990;13:61–65.PubMedGoogle Scholar
  177. 177.
    Le Devehat C, Vimeux M, Bondoux G, Khodabandehlov T. Red blood cell aggregation in diabetes mellitus. Int Angiol. 1990;9:11–15.Google Scholar
  178. 178.
    Ziegler O, Guerci B, Muller S, et al. Increased erythrocyte aggregation in insulin-dependent diabetes mellitus and its relationship to plasma factors: a multivariate analysis. Metabolism. 1994;43:1182–1186.PubMedCrossRefGoogle Scholar
  179. 179.
    Watala C. Hyperglycemia alters the physio-chemical properties of proteins in erythrocyte membrane in diabetic patients. Int J Biochem. 1992;24:1755–1761.PubMedCrossRefGoogle Scholar
  180. 180.
    Roger ME, Williams DT, Niththyananthan R, Rampling MW, Heslop KE, Johnston DG. Decrease in erythrocyte glycophorin sialic acid content is associated with increased aggregation in human diabetes. Clin Sci. 1992;82:309–313.Google Scholar
  181. 181.
    Murakami K, Kondo T, Ohtsuka Y, Fujiwara Y, Shimada M, Kawakami Y. Impairment of glutathione metabolism in erythrocyte from patients with diabetes mellitus. Metabolism. 1989;38:753–758.PubMedCrossRefGoogle Scholar
  182. 182.
    Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium. Thromb Haemost. 1997;77:408–423.PubMedGoogle Scholar
  183. 183.
    Ono H, Umeda F, Inoguchi T, Ibayashi H. Glucose inhibits the prostacyclin production by cultured aortic en-dothelial cells. Thromb Haemost. 1988;60:174–177.PubMedGoogle Scholar
  184. 184.
    Boeri D, Almus FE, Maiello M, Cagliero E, Rao LV, Lorenzi M. Modification of tissue-factor mRNA and protein response to thrombin and interleukin-I by high glucose in cultured human endothelial growth. Diabetes. 1989;38:212–218.PubMedCrossRefGoogle Scholar
  185. 185.
    Porta M, LeSelva M, Molinatti PA. von Willebrand factor and endothelial abnormalities in diabetic microangiopathy. Diabetes Care. 1991;14(suppl 1):167–172.PubMedCrossRefGoogle Scholar
  186. 186.
    Plater ME, Ford I, Dent MT, Preston FE, Ward JE. Elevated von Willebrand factor antigen predicts deterioration in diabetic peripheral nerve function. Diabetologia. 1996;39:336–343.PubMedCrossRefGoogle Scholar
  187. 187.
    Ganda OP, Arkin CF. Hyperfibrinogenemia: an important risk factor for vascular complications in diabetes. Diabetes Care. 1992;15:1245–1250.PubMedCrossRefGoogle Scholar
  188. 188.
    Ceriello A, Giugliano D, Quatraro A, DelloRusso P, Torella R. Blood glucose may condition factor VII levels in diabetic and normal subjects. Diabetologia. 1988;31:889–891.PubMedCrossRefGoogle Scholar
  189. 189.
    Khawand CE, Jamart J, Doonckier J, et al. Hemostasis variable in type I diabetic patient without demonstrable vascular complication. Diabetes Care. 1993;16:1137–1145.PubMedCrossRefGoogle Scholar
  190. 190.
    Reach G. Continuous glucose monitoring with a subcutaneous sensor: rationale, requirement and achievement, and prospects. In: Marshall SM, Homes PD, Alberti KGMM, Krall LP, eds. The Diabetes Annual. 7th ed. Amsterdam: Elsevier Science; 1993:332–348.Google Scholar
  191. 191.
    Ostermann H, Van deloo J. Factors of hemostatic system in diabetic patients: a survey of controlled studies. Haemostasis. 1986;16:386–416.PubMedGoogle Scholar
  192. 192.
    DeFeo P, Gaisano MG, Haymond MW. Differential effect of insulin deficiency on albumin and fibrinogen synthesis in humans. J Clin Invest. 1991;88:833–840.CrossRefGoogle Scholar
  193. 193.
    Ceriello A, Giugliano D, Quatraro A, et al. Daily rapid blood glucose variation may condition antithrombin III biological activity but not its plasma concentration in insulin-dependent diabetes. Diabetes Metab. 1987;13:16–19.Google Scholar
  194. 194.
    Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebure P. Evidence for a hyperglycemia-dependent decrease of antithrombin III-thrombin complex formation in humans. Diabetologia. 1990;33:163–167.PubMedCrossRefGoogle Scholar
  195. 195.
    Ceriello A, Quatraro A, Delia Russo P, et al. Protein C deficiency in insulin-dependent diabetes: a hyperglycemia-related phenomenon. Thromb Haemost. 1990;64:104–107.PubMedGoogle Scholar
  196. 196.
    Gough SCL, Grant PJ. The fibrinolytic system in diabetes mellitus. Diabet Med. 1991;8:898–905.PubMedCrossRefGoogle Scholar
  197. 197.
    Walmsley D, Hampton KK, Grant PJ. Contrasting fibrinolytic responses in type I (insulin-dependent) and type II (non-insulin-dependent) diabetes. Diabet Med. 1991;8:954–959.PubMedCrossRefGoogle Scholar
  198. 198.
    Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor I from cultured umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis. 1990;10:1067–1073.PubMedCrossRefGoogle Scholar
  199. 199.
    Davis JW, Hartman CR, Davis RF, Kyner JL, Lewis HDJ, Phillips PE. Platelet aggregate ratio in diabetes mellitus. Acta Haematol. 1982;67:222–224.PubMedCrossRefGoogle Scholar
  200. 200.
    Winocour PD. The role of platelet in the pathogenesis of diabetic vascular disease. In: Draznin B, Melmed S, LeRoith D, eds. Complications of Diabetes Mellitus. New York, NY: Alan R. Liss, Inc; 1989:37–42.Google Scholar
  201. 201.
    Winocour PD, Perry DW, Kinlough-Rathbone RL. Hyper-sensitivity to ADP of platelet from diabetic rats associated with enhanced fibrinogen binding. Eur J Clin Invest. 1992;22:19–23.PubMedCrossRefGoogle Scholar
  202. 202.
    Winocour PD, Halushka PV, Colwell JA. Platelet involvement in diabetes mellitus. In: Longenecker GL, ed. The Platelet: Physiology and Pharmacology. New York, NY: Academic Press; 1985:341–366.Google Scholar
  203. 203.
    Tschoepe D, Roesen P, Schwippert B, Gries FA. Platelet in diabetes: the role in hemostatic regulation in atherosclerosis. Semin Thromb Hemost. 1993;19:122–128.PubMedCrossRefGoogle Scholar
  204. 204.
    Villanueva GB, Allen N. Demonstration of altered antithrombin III activity due to non enzymatic glycosylation at glucose concentration expected to be encountered in severely diabetic patients. Diabetes. 1988;37:1103–1107.PubMedCrossRefGoogle Scholar
  205. 205.
    Ceriello A, Marchi E, Barbanti M, et al. Non-enzymatic glycation reduces heparin cofactor II antithrombin activity. Diabetologia. 1990;33:205–207.PubMedCrossRefGoogle Scholar
  206. 206.
    Winocour PD, Watala C, Perry DW, Kinlough-Rathbone RL. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thromb Haemost. 1992;68:557–582.Google Scholar
  207. 207.
    Cohen I, Burk D, Fullerton RJ, Veis A, Green D. Non enzymatic glycation of human blood platelet proteins. Thromb Res. 1989;55:341–349.PubMedCrossRefGoogle Scholar
  208. 208.
    Collier A, Rumley AG, Patterson JR, Leach JP, Lowe GD, Small M. Free radical activity and hemostatic factor in NIDDM patients with and without microalbuminuria. Diabetes. 1992;41:909–913.PubMedCrossRefGoogle Scholar
  209. 209.
    Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331:1286–1292.PubMedCrossRefGoogle Scholar
  210. 210.
    Pfeiffer A, Schatz H. Diabetic microvascular complications and growth factors. Exp Clin Endocrinol. 1995;103:7–14.CrossRefGoogle Scholar
  211. 211.
    Yokoyama H, Deckert T. Central role of TGF-beta in the pathogenesis of diabetic nephropathy and macrovascular complications: a hypothesis. Diabetes Med. 1996;13:313–320.CrossRefGoogle Scholar
  212. 212.
    Bollineni JS, Reddi AS. Transforming growth factor-beta 1 enhances glomerular collagen synthesis in diabetic rats. Diabetes. 1993;42:1673–1677.PubMedCrossRefGoogle Scholar
  213. 213.
    Morishita R, Nakamura S, Nakamura Y, et al. Potential role of an endothelium-specif ic growth factor, hepatocyte growth factor, on endothelial damage. Diabetes. 1997;46:138–142.PubMedCrossRefGoogle Scholar
  214. 214.
    Ferrara N, Davis-Smith T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.PubMedCrossRefGoogle Scholar
  215. 215.
    Aiello LP, Avery R, Arrigg R, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–1487.PubMedCrossRefGoogle Scholar
  216. 216.
    Tilton RG, Kawamura T, Chang KG, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest. 1997;99:2192–2202.PubMedCrossRefGoogle Scholar
  217. 217.
    Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J. 1995;9:919–925.PubMedGoogle Scholar
  218. 218.
    Zimering MB, Eng J. Increased basic fibroblast growth factor-like substance in plasma from a subset of middle-aged or elderly male diabetic patients with microalbuminuria or proteinuria. J Clin Endocrinol Metab. 1996;81:4446–4452.PubMedCrossRefGoogle Scholar
  219. 219.
    Harrison AA, Dunbar PR, Neale TJ. Immunoassay of platelet-derived growth factor in the blood of patients with diabetes mellitus. Diabetologia. 1994;3W7:1142–1146.CrossRefGoogle Scholar
  220. 220.
    Lev-Ran A, Hwang DL. Epidermal growth factor and platelet-derived growth factor in blood in diabetes mellitus. Acta Endocrinologica. 1990;123:326–330.PubMedGoogle Scholar
  221. 221.
    Kawano M, Koshikawa T, Kanzaki T, Morisaki N, Saito Y, Yoshida S. Diabetes mellitus induces accelerated growth of aortic smooth muscle cells: association with overex-pression of PDGF beta-receptor. Eur J Clin Invest. 1993;23:84–90.PubMedCrossRefGoogle Scholar
  222. 222.
    Okuda Y, Adrogue HJ, Nakajima T, et al. Increased production of PDGF by angiotensin and high glucose in human vascular endothelium. Life Sci. 1996;59:1455–1461.PubMedCrossRefGoogle Scholar
  223. 223.
    Delafontaine P. Insulin-like growth factors and its binding proteins in the cardiovascular system. Cardiovasc Res. 1995;30:825–834.PubMedGoogle Scholar
  224. 224.
    Borg WP, Sherwin RS. Metabolic effects of insulin-like growth factor 1. In: Marshall SM, Home PD, Rizza RA, eds. The Diabetes Annual. Amsterdam: Elsevier Science; 1995:57–69.Google Scholar
  225. 225.
    Kirstein M, Astom C, Hintz R, Vlassara H. Receptor specific induction of insulin like growth factor I in human monocyte by advanced glycosylation end products: modified proteins. J Clin Invest. 1992;90:439–446.PubMedCrossRefGoogle Scholar
  226. 226.
    Diabetes Control and Complication Trial Research Group. The effect of intensive treatment of diabetes on development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–986.CrossRefGoogle Scholar
  227. 227.
    Kaufman FR. Glucose sensors in the mid-1990s. In: Marshall SM, Home PD, Rizza RA, eds. The Diabetes Annual. 10th ed. Amsterdam: Elsevier Science; 1996:252–257.Google Scholar
  228. 228.
    Zier H, Kerner W, Bruckel J, Pfeiffer EF. Glucosensor Unitec Ulm: a portable continuously measuring glucose sensor and monitor. Biomed Technik. 1990;35:2–4.CrossRefGoogle Scholar
  229. 229.
    Pickup JC, William G. Textbook of Diabetes. 2nd ed. Oxford, England: Blackwell Science Ltd; 1997.Google Scholar
  230. 230.
    Salem J, Charles MA. Devices for insulin administration. Diabetes Care. 1990;13:955–979.CrossRefGoogle Scholar
  231. 231.
    Illum L, Davis SS. Intranasal insulin: clinical pharmaco-kinetics. Clin Pharmacokinet. 1992;23:30–41.PubMedCrossRefGoogle Scholar
  232. 232.
    Kennedy FB. Recent developments in insulin delivery techniques: current status and future potential. Drugs. 1991;42:213–227.PubMedCrossRefGoogle Scholar
  233. 233.
    Tachibana K, Tachibana S. Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol. 1991;43:270–271.PubMedCrossRefGoogle Scholar
  234. 234.
    Duckworth WC, Saudek CD, Henry RR. Why intraperitoneal delivery of insulin with implantable pumps in NIDDM? Diabetes. 1992;41:657–661.PubMedCrossRefGoogle Scholar
  235. 235.
    Wredling R, Liu D, Lins PE, Adamson U. Variation of insulin absorption during subcutaneous and peritoneal infusion in insulin-dependent diabetic patients with unsatisfactory long-term glycemic response to continuous subcutaneous insulin therapy. Diabetes Metab. 1991;17:456–459.Google Scholar
  236. 236.
    Larsen JL, Stratta RJ. Pancreas transplantation: a treatment option for insulin-dependent diabetes mellitus. Diabetes Metab. 1996;22:139–146.PubMedGoogle Scholar
  237. 237.
    Sutherland DER. Pancreatic transplantation: an update. Diabetes Metab Rev. 1993;1:152–165.Google Scholar
  238. 238.
    Morel P, Chau C, Brayman K, et al. Quality of metabolic control at 2 to 12 years after a pancreas transplant. Transplant Proc. 1992;24:835–838.PubMedGoogle Scholar
  239. 239.
    Scheider A, Meyer-Schwickerath E, Nusser J, Land W, Landgraf R. Diabetic retinopathy and pancreas transplantation: a 3-year follow-up. Diabetologia. 1991;34(suppl 1): S95–S99.PubMedCrossRefGoogle Scholar
  240. 240.
    Muller-Felber W, Landgraf R, Wagner S, et al. Follow-up study of sensory-motor polyneuropathy in type I (insulin-dependent) diabetic subjects after simultaneous pancreas and kidney transplantation and after graft rejection. Diabetologia. 1991;34(suppl 1):113–117.CrossRefGoogle Scholar
  241. 241.
    Abendroth A, Schmand J, Landgraf R, Illner WD, Land W. Diabetic microangiopathy in type I (insulin-dependent) diabetic patients after successful pancreatic and kidney or solitary kidney transplantation. Diabetologia. 1991;34(suppl 1):131–134.CrossRefGoogle Scholar
  242. 242.
    Stratta RJ, Taylor RJ, Bynon JS, et al. Surgical treatment of diabetes mellitus with pancreatic transplantation. Ann Surg. 1994;220:809–817.PubMedCrossRefGoogle Scholar
  243. 243.
    Pipeleers D, Keymeulen B, Korburt G. Islet transplantation. In: Marshall SM, Home PD, eds. The Diabetes Annual. Amsterdam: Elsevier Science; 1994:299–330.Google Scholar
  244. 244.
    Serri O, Renier G. Intervention in diabetic vascular disease by modulation of growth factors. Metabolism. 1995;44:83–90.PubMedCrossRefGoogle Scholar
  245. 245.
    Serri O, Beauregard H, Brazeau P, et al. Somatostatin analog, octreotide, reduces increased glomerular filtration rate and kidney size in insulin-dependent diabetes. JAMA. 1991;265:888–892.PubMedCrossRefGoogle Scholar
  246. 246.
    Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature. 1992;360:361–364.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Khurram Kamal
  • Robert Chang
  • Bauer E. Sumpio

There are no affiliations available

Personalised recommendations