Hyperviscosity Syndromes

  • Giovanni Ciufetti
  • Rita Lombardini

Abstract

Rheology is the study of how matter is deformed or flows when force is applied. Hemorheology is the study of the flow properties of one fluid—blood—circulating in a closed system that is subjected to a tangential force originating in a pulsing pump—the heart. Clinical hemorheology is the study of blood flow during physiological changes in normal circulation and the syndromes or diseases that develop under pathological conditions.

Keywords

Cholesterol Vortex Catecholamine Myeloma Thrombin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts PA MM, Bolhis PA, Sakariassen KS, Heether RM, Sixma JJ. Red blood cell size is important for adherence of blood platelets to artery subendothelium. Blood. 1983;62:214–217.PubMedGoogle Scholar
  2. 2.
    Aarts PA MM, Heether RM, Sixma JJ. Red blood cell deformability influences platelets-vessel wall interaction in flowing blood. Blood. 1984;64:1228–1233.PubMedGoogle Scholar
  3. 3.
    Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050.PubMedGoogle Scholar
  4. 4.
    Baar S. Water movement in red cells from burned patients: its relationship to sodium retention and red cell filterability. Acta Clinical Chemistry. 1979;94:181–190.CrossRefGoogle Scholar
  5. 5.
    Baar S. The influence of catecholamines and prostaglandins on calcium efflux and f ilterability of thermally damaged erythrocytes: an in vivo study. British Journal of Experimental Pathology. 1982;63:644–654.PubMedGoogle Scholar
  6. 6.
    Bagge U, Branemark PL. White blood cell rheology: an intravital study in man. Advances in Microcirculation. 1977;7:1–17.Google Scholar
  7. 7.
    Bareford D, Coppock JS, Stone PCW, Bacon PA, Stuart J. Abnormal blood rheology in Raynaud’s phenomenon. Clinical Hemorheology. 1986;6:53–60.Google Scholar
  8. 8.
    Bareford D, Stone PCW, Caldwell NM, Stuart J. Erythrocyte morphology as a determinant of abnormal erythrocyte deformability in liver disease. Clinical Hemorheology. 1985;5:473–481.Google Scholar
  9. 9.
    Barnes AJ. Blood viscosity in diabetes mellitus. In: Lowe GDO, Barbenel JC, Forbes CD, eds. Clinical Aspects of Blood Viscosity and Cell Deformability. Berlin: Springer-Verlag; 1981:151–162.CrossRefGoogle Scholar
  10. 10.
    Bergentz SE, Gelin L, Rudenstam G, Zederfeld B. The viscosity of whole blood in trauma. Acta Chirugica Scandinavica. 1965;126:289–293.Google Scholar
  11. 11.
    Bloch KJ, Maki DG. Hyperviscosity syndromes associated with immunoglobulin abnormalities. Semin Hematol. 1973;10:113–121.PubMedGoogle Scholar
  12. 12.
    Bottiger LE, Carlson LA, Ekelund LG, Olsson AC. Raised ESR is asymptomatic hyperlipoproteinaemia. BMJ. 1973;2:681–683.PubMedCrossRefGoogle Scholar
  13. 13.
    Bottiger LE, Svedberger CA. Normal erythrocyte sedimentation rate and age. BMJ. 1967;2:85–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Brooks DE, Goodwin JW, Seaman GVT. Interactions among erythrocytes under shear. J Appl Physiol. 1970;28:172–174.PubMedGoogle Scholar
  15. 15.
    Browning GG, Gatehouse S, Lowe GDO. Blood viscosity as a factor in sensorineural hearing impairment. Lancet. 1986;1:121–123.PubMedCrossRefGoogle Scholar
  16. 16.
    Buskard NA. Plasma exchange and plasmapheresis. Can Med Assoc J. 1978;119:681–683.PubMedGoogle Scholar
  17. 17.
    Cade DC, O’Donovan JE, Panelli D, Galbally BP. Volume replacement in shock. Medicine. (3rd series) 1980;28:1463–1467.Google Scholar
  18. 18.
    Charm SE, McComis W, Tejada C, Kurland G. Effect of a fatty meal on whole blood and plasma viscosity. J Appl Physiol. 1963;18:1217–1220.PubMedGoogle Scholar
  19. 19.
    Chien S. Blood rheology and its relation to flow resistance and transcapillary exchange, with special reference to shock. Advances in Microcirculation. 1969;2:89–103.Google Scholar
  20. 20.
    Chien S. Present state of blood rheology. In: Messmer K, Schmid-Schoenbein H, eds. Hemodilution: Theoretical Basis and Clinical Application. Basel: Karger; 1972:1–40.Google Scholar
  21. 21.
    Chien S. Principles and techniques for assessing erythrocyte deformability. Blood Cells. 1978;3:71–74.Google Scholar
  22. 22.
    Chien S. Hemorheology in disease: pathophysiological significance and therapeutic implications. Clinical Hemorheology. 1981;1:419–442.Google Scholar
  23. 23.
    Chien S, DormandyJA, Ernst E, Matrai A. Clinical Hemorheology. Dordrecht: Martinus Nijhoff; 1987.Google Scholar
  24. 24.
    Chien S, Schmid-Schoenbein H, Sung KLP, Schmalzer EA, Skalak R. Viscoelastic properties of leucocytes. In: Meiselman HJ, Lichtmann KA, LaCelle PL, eds. White Cell Mechanics: Basic Science and Clinical Aspects. New York, NY: Alan R. Liss; 1984:19–51.Google Scholar
  25. 25.
    Chien S, Usami S, Taylor HM, Lundberg J, Gregersen MI. Effects of haematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol. 1966;21:81–85.PubMedGoogle Scholar
  26. 26.
    Ciuffetti G, Balendra R, Lennie SE, Anderson J, Lowe GDO. White blood cell rheology in acute stroke. BMJ. 1989;298:930–931.PubMedCrossRefGoogle Scholar
  27. 27.
    Ciuffetti G, Corea L, Mannarino E, Mercuri M, Lombardini R, Santambrogio L. Leucocytes and free radicals in stable angina pectoris. Jpn Heart J. 1992;33:145–157.PubMedCrossRefGoogle Scholar
  28. 28.
    Ciuffetti G, Lombardini R, Paltriccia R, Santambrogio L, Mannarino E. Human leucocyte-endothelial interactions in peripheral arterial occlusive disease. Eur J Clin Invest. 1994;24:65–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Ciuffetti G, Mercuri M, Lombardini R, et al. Stable angina pectoris and controlled ischaemia: what causes the abnormalities in whole blood filterability? Am Heart J. 1990;119:54–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Ciuffetti G, Mercuri M, Lombardini R, Paltriccia R, Ott C. Human leucocyte rheology after acute infection. Haemato-logica. 1990;75:94.Google Scholar
  31. 31.
    Ciuffetti G, Pasqualini L, Fuscaldo G, Piccioni N, Paltriccia R, Mannarino E. Neutrophil-derived adhesion molecules in human digital ischaemia and reperfusion. Vasa. 1995;24:155–158.PubMedGoogle Scholar
  32. 32.
    Ciuffetti G, Scardazza A, Serafini G, Lombardini R, Mannarino E, Simoncelli C. Whole blood filterability in sudden deafness. Laryngoscope. 1991;101:65–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Cohn LH, Klovekorn P, Moore FD, Collins JJ Jr. Intrinsic plasma volume deficits in patients with coronary artery disease: effects of myocardial revascularization. Arch Surg. 1974;108:57–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Cokelet GR. Macroscopic rheology and tube flow of human blood. In: Grayson BJ, Ziugg KJ, eds. Microcirculation. New York, NY: Plenum Publishing Co; 1976:9–31.Google Scholar
  35. 35.
    Cooper RA. Hemolytic syndromes and red cell membrane abnormalities in liver disease. Seminari Hematologica. 1980;17:103–112.Google Scholar
  36. 36.
    Cooper RA, Leslie MH, Fischkoff S, Shinitzky M, Shattil SJ. Factors influencing the lipid composition and fluidity of red cell membranes in vitro: production of red cells possessing more than two cholesterols per phospholipid. Biochemistry. 1978;17:327–331.PubMedCrossRefGoogle Scholar
  37. 37.
    Davies JWL. Physiological Response to Burning Injury. London: Academic Press Inc; 1982.Google Scholar
  38. 38.
    De Cree J, De Cock W, Geukens H, De Clerck F, Beerens M, Verhaegen H. The rheological effects of cinnarizine and flunarizine in normal and pathological conditions. Angiology. 1979;30:505–525.PubMedCrossRefGoogle Scholar
  39. 39.
    Devereaux RB, Drayer JJM, Chien S, et al. Whole blood viscosity as a determinant of cardiac hypertrophy in systemic hypertension. Am J Cardiol. 1984;54:592–595.CrossRefGoogle Scholar
  40. 40.
    Dintenfass L. Rheology of Blood in Diagnostic and Preventive Mediane. London: Butterworth; 1976:49–58.Google Scholar
  41. 41.
    Dintenfass L. Some aspects of haemorheology of metastasis in malignant melanoma. Haemotologia. 1977;11:301–304.Google Scholar
  42. 42.
    Dintenfass L. Haemorheology of cancer metastases: an example of malignant melanoma. Clinical Hemorheology. 1982;2:259–271.Google Scholar
  43. 43.
    Dintenfass L, Forbes CD, McDougall IR. Blood viscosity in hyperthyroid and hypothyroid patients. Haemostasis. 1974;3:348–352.PubMedGoogle Scholar
  44. 44.
    Dintenfass L, Lake B. Beta-blockers and blood viscosity. Lancet. 1976;1:1026.PubMedCrossRefGoogle Scholar
  45. 45.
    Dintenfass L, Ibels LS. Blood viscosity factors and occlusive arterial disease in renal transplant recipients. Nephron. 1975;15:456–465.PubMedCrossRefGoogle Scholar
  46. 46.
    Di Perri T, Forconi S, Agnusdei D, Guerrini M, Laghi Pasini F. The effect of intravenous isoxsuprine on blood viscosity in patients with occlusive arterial disease. Br J Clin Pharmacol. 1978;5:255–260.CrossRefGoogle Scholar
  47. 47.
    Di Perri T, Forconi S, Di Lollo F, Porza G. La sindrome da iperviscosità ematica: fisiologia, patologia e clinica. In: Atti 84 Congresso Società Italiana Mediana Interna. Rome: Edizione Luigi Porri; 1983:193–294.Google Scholar
  48. 48.
    Di Perri T, Vittoria A, Guerrini M, et al. Action of ASA on hemorheological changes of ischemic patients. In: Segre FA, Ohnmeiss WL, eds. ASA International Symposium on Present State of Acetylsalicylic Acid in Research and Therapeutic Application. Florence, Italy: OIC Medical Press; 1982:81–84.Google Scholar
  49. 49.
    Ditzel J. Hemodilution in myocardial infarction. In: Messmer K, Schmid-Schoenbein H, eds. Hemodilution: Theoretical Basis and Clinical Application. Basel: Karger; 1972:264–270.Google Scholar
  50. 50.
    Dodds AJ. Plasma exchange? In: Lowe GDO, Barbenel JC, Forbes CD, eds. Clinical Aspects of Blood Viscosity and Cell Deformability. Berlin: Springer-Verlag; 1981:227–234.CrossRefGoogle Scholar
  51. 51.
    Dodds AJ, Matthews PN, Bailey MJ, Flute PT, Dormandy JA. Changes in red cell deformability following surgery. Thromb Res. 1980;18:561–566.PubMedCrossRefGoogle Scholar
  52. 52.
    Dormandy JA. Drug modification of erythrocyte deformability. In: Lowe GDO, Barbenel JC, Forbes CD, eds. Clinical Aspects of Blood Viscosity and Cell Deformability. Berlin: Springer-Verlag; 1981:251–256.CrossRefGoogle Scholar
  53. 53.
    DormandyJA, Ernst E. Effects of buflomedil on erythrocyte deformability. Angiology. 1981;32:714–717.PubMedCrossRefGoogle Scholar
  54. 54.
    Dormandy JA, Hoare E, Colley J, Arrowsmith DE, Dormandy TL. Clinical haemodynamic, rheological, and biochemical findings in 126 patients with intermittent claudication. BMJ 1973;4:576–581.PubMedCrossRefGoogle Scholar
  55. 55.
    Douglas JT, Lowe GDO, Hillis WS, Rao R, Hogg KJ, Gemmill JD. Blood and plasma hyperviscosity in acute myocardial infarction compared to unstable angina: rapid reversal by thrombolysis. Thromb Haemost. 1989;62:590–592.Google Scholar
  56. 56.
    Eisenberg S. Blood viscosity and fibrinogen concentration following cerebral infarction. Circulation. 1966;33-34 (suppl 2):10–14.Google Scholar
  57. 57.
    Ellis ME, Ralston S. The ESR in the diagnosis and management of the polymyalgia rheumatica/giant cell arteritis syndrome. Ann Rheum Dis. 1983;42:168–172.PubMedCrossRefGoogle Scholar
  58. 58.
    Ernst E, Hammerschmidt DE, Bagge U, Matrai A, Dormandy JA. Leucocytes and the risk of ischemic diseases. JAMA. 1987;257:2318–2324.PubMedCrossRefGoogle Scholar
  59. 59.
    Ernst E, Matrai A. Altered red and white blood cell rheology in type II diabetes. Diabetes. 1986;35:1412–1415.PubMedCrossRefGoogle Scholar
  60. 60.
    Ernst E, Matrai A, Dormandy JA. Shear dependence of blood coagulation. Clinical Hemorheology. 1984;4:395–399.Google Scholar
  61. 61.
    Ernst E, Roloff C, Magyarosy I, Matrai A. Hemorheological abnormalities in ankylosing spondylitis. Clinical Hemorheology. 1985;5:109–114.Google Scholar
  62. 62.
    European Collaborative Study Group. Streptokinase in acute myocardial infarction. N Engl J Med. 1979;301:797–802.CrossRefGoogle Scholar
  63. 63.
    Fahraeus R. The suspension stability of blood. Physiol Rev. 1929;9:241–274.Google Scholar
  64. 64.
    Fahraeus R. Influence of the rouleaux formation of the erythrocytes on the rheology of the blood. Acta Medica Scandinavica. 1958;161:151–159.PubMedCrossRefGoogle Scholar
  65. 65.
    Fahraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol. 1931;96:562–568.Google Scholar
  66. 66.
    Forconi S, Pieragalli D, Guerrini M, Di Perri T. Hemorheology and peripheral arterial diseases. Clinical Hemorheology. 1987;7:145–158.Google Scholar
  67. 67.
    Gamier M, Hanss M, Paraf A. Erythrocytes filterability reduction and membrane lipids in cirrhosis. Clinical Hemorheology. 1983;3:45–52.Google Scholar
  68. 68.
    Goldsmith HL, Karino T. Microrheology and clinical medicine: unravelling some problems related to thrombosis. Clinical Hemorheology. 1982;2:143–156.Google Scholar
  69. 69.
    Gordon W. The effect of ingested glucose and intravenous injections of glucose on the viscosity of whole blood in man. Clin Sci (Colch). 1969;36:25–39.Google Scholar
  70. 70.
    Goslinga H. Blood Viscosity and Shock. Berlin: Springer-Verlag; 1984.CrossRefGoogle Scholar
  71. 71.
    Gottstein U. Normovolemic and hypervolemic hemodilution in cerebrovascular ischemia. Biblioteca Haematologica. 1981;47:127–138.Google Scholar
  72. 72.
    Goyle KB, Dormandy JA. Abnormal blood viscosity in Raynaud’s phenomenon. Lancet. 1976;1:1317–1318.PubMedCrossRefGoogle Scholar
  73. 73.
    Guegen M, Delamaire D, Durand F, Deugnier Y, Bourel M, Genetet B. Haemorheological abnormalities in chronic alcoholism. Clinical Hemorheology. 1984;4:327–340.Google Scholar
  74. 74.
    Hazelton RA, Lowe GDO, Forbes CD, Sturrock RD. Increased blood and plasma viscosity in systemic lupus erythematosus (SLE) [letter]. J Rheumatol. 1985;12:616.PubMedGoogle Scholar
  75. 75.
    Hoffman R, Boswell HS. Polycythemia vera. In: Hoffman R, Benz EJ Jr., Shattil SJ, Furie B, Cohen HJ, eds. Hematology Basic Principles and Practice. New York, NY: Churchill Livingstone; 1991:834–854.Google Scholar
  76. 76.
    Hossmann V, Heiss WD, Bewermeyer H, Wiedemann G. Controlled trial of ancrod in ischemic stroke. Arch Neurol. 1983;40:803–808.PubMedCrossRefGoogle Scholar
  77. 77.
    Hughes TP, Goldman JM. Chronic myeloid leukemia. In: Hoffman R, Benz EJ Jr., Shattil SJ, Furie B, Cohen HJ, eds. Hematology Basic Principles and Practice. New York, NY: Churchill Livingstone; 1991:854–869.Google Scholar
  78. 78.
    Inauen W, Staubli M, Descoeudres C, Galeazzi RL, Straub PW. Erythrocyte deformability in dialyzed and nondialyzed uremic patients. Eur J Clin Invest. 1982;12:173–176.PubMedCrossRefGoogle Scholar
  79. 79.
    Isbister JB, Biggs JL. Reactions to rapid infusion of stable plasma protein solution during large volume plasma exchange. Anaesth Intensive Care. 1976;4:105–107.PubMedGoogle Scholar
  80. 80.
    Jan KM, Chien S, Bigger JT Jr. Observations on blood viscosity changes after acute myocardial infarction. Circulation. 1975;51:1079–1084.PubMedCrossRefGoogle Scholar
  81. 81.
    Koenig W, Sund M, Ernst E, Keil U, Rosenthal J, Hombach V. Association between plasma viscosity and blood pressure. Results from the MONICA-Project Augsburg. Am J Hypertens. 1991;4:529–536.PubMedCrossRefGoogle Scholar
  82. 82.
    Koenig W, Sund M, Ernst E, Matrai A, Keil U, Rosenthal J. Is increased plasma viscosity a risk factor for high blood pressure? Angiology. 1989;40:153–163.PubMedCrossRefGoogle Scholar
  83. 83.
    Kovacs IB, Sowemimo-Coker SO, Kirby JDT, Turner P. Altered behaviour of erythrocytes in scleroderma. Clin Sci (Colch). 1983;65:515–519.Google Scholar
  84. 84.
    Kyle RA. Plasma cell proliferative disorders. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B and Cohen J, eds. Haematology Basic Principles and Practice. New York, NY: Churchill Livingstone; 1991:1021–1038.Google Scholar
  85. 85.
    Langer L, Bergentz SE, Bjure J, Faberberg SE. The effect of exercise on haematocrit, plasma volume, and viscosity in diabetes mellitus. Diabetologia. 1971;7:29–33.PubMedCrossRefGoogle Scholar
  86. 86.
    Lawrence MB, Smith CW, Eskin SG, McIntire LV. Effect of venous shear stress on CD 18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990;75:227–237.PubMedGoogle Scholar
  87. 87.
    Leonhardt H, Arntz HR, Klemens U. Studies of plasma viscosity in primary hyperlipoproteinaemia. Atherosclerosis. 1977;28:29–40.PubMedCrossRefGoogle Scholar
  88. 88.
    Long DM, Rosen AL, Malone LVW, Meier MA. Blood rheology in trauma patients. Surg Clin North Am. 1972;52:19–30.PubMedGoogle Scholar
  89. 89.
    Lorient-Roudaut MF, Manuau JP, Bricaud H, Boisseau MR. Filterability and cerebrovascular thrombosis. Scand J Clin Lab Invest. 1981;41(suppl 156):203–208.CrossRefGoogle Scholar
  90. 90.
    Lowe GDO. Report on Working Group Meeting: red cell deformability—methods and terminology. Clinical Hemorheology. 1981;1:513–515.Google Scholar
  91. 91.
    Lowe GDO. Defibrination, blood flow, and blood rheology. Clin Hemorheol. 1984;4:15–28.Google Scholar
  92. 92.
    Lowe GDO. Blood rheology in arterial disease. Clin Sci (Colch). 1986;71:116–137.Google Scholar
  93. 93.
    Lowe GDO. Blood rheology and hyperviscosity syndromes. Bailliére’s Clin Haematol. 1987;1:798–867.Google Scholar
  94. 94.
    Lowe GDO. Blood rheology in vitro and in vivo. Bailliére’s Clin Haematol. 1987;1:597–636.CrossRefGoogle Scholar
  95. 95.
    Lowe GDO. Blood rheology in general medicine and surgery. Bailliére’s Clin Haematol. 1987;9:827–861.CrossRefGoogle Scholar
  96. 96.
    Lowe GDO, Anderson J, Barbanel JC, Forbes CD. Prognostic importance of blood rheology in acute stroke. In: Hartmann HL, Kuschinsky TK, eds. Cerebral Ischemia and Hemorheology. Berlin: Springer-Verlag; 1987:496–501.CrossRefGoogle Scholar
  97. 97.
    Lowe GDO, Forbes CD, Foulds WS. Haemorheology and retinal disorders. Clinical Hemorheology. 1987;7:181–188.Google Scholar
  98. 98.
    Lowe GDO, Forbes CD, Prentice CRM. Defibrinating agents. In: Lowe GDO, Barbenel JC, Forbes CD, eds. Clinical Aspects of Blood Viscosity and Cell Deformability. Berlin: Springer-Verlag; 1981.CrossRefGoogle Scholar
  99. 99.
    Lowe GDO, Jaap AJ, Forbes CD. Relationship of atrial fibrillation and high haematocrit to mortality in acute stroke. Lancet. 1983;1:784–786.PubMedCrossRefGoogle Scholar
  100. 100.
    Lowe GDO, Smith WCS, Tunstall-Pedoe H, et al. Cardiovascular risk and haemorheology: results from the Scottish Heart Health Study and the MONICA-Project, Glasgow. Clinical Hemorheology. 1988;8:517–524.Google Scholar
  101. 101.
    Lowe GDO, Wood DA, Douglas JT, et al. Relationships of plasma viscosity, coagulation, and fibrinolysis to coronary risk factors and angina. Thromb Haemost. 1991;65:339–343.PubMedGoogle Scholar
  102. 102.
    Matrai A, Whittington RB, Ernst E. A simple method of estimating whole blood viscosity at standardized hematocrit. Clinical Hemorheology. 1987;7:261–265.Google Scholar
  103. 103.
    Mayer GE. Blood viscosity in healthy subjects and patients with coronary heart disease. Can Med Assoc J. 1964;91:951–954.PubMedGoogle Scholar
  104. 104.
    McGinley E, Lowe GDO, Boulton-Jones M, Forbes CD, Prentice CRM. Blood viscosity and haemostasis in the nephrotic syndrome. Thromb Haemost. 1983;49:155–157.PubMedGoogle Scholar
  105. 105.
    McMillan DE. Two roles for plasma fibrinogen in the production of diabetic microangiopathy. Diabetes. 1975;24(suppl 2):438–440.Google Scholar
  106. 106.
    Merrill EW, Pellietier GA. Viscosity of human blood: transition from Newtonian to non-Newtonian. J Appl Physiol. 1967;23:178–181.PubMedGoogle Scholar
  107. 107.
    Messmer KFW. Acceptable hematocrit levels in surgical patients. World J Surg. 1987;11:41–46.PubMedCrossRefGoogle Scholar
  108. 108.
    Messmer KFW. The use of plasma substitutes with special attention to their side effects. World J Surg. 1987;11:69–74.PubMedCrossRefGoogle Scholar
  109. 109.
    Messmer KFW, Schmid-Schoenbein H. Hemodilution, theoretical basis, and clinical application. Basel: Karger;1972.Google Scholar
  110. 110.
    Messmer KFW, Schmid-Schoenbein H. International hemodilution. In: Dintenfass L, Copley AL, eds. Proceedings Second International Symposium Biblioteca Hematologica. Basel: Karger; 1975.Google Scholar
  111. 111.
    Miller AK, Whittington RB. Plasma viscosity in pulmonary tuberculosis. Lancet. 1942;2:510–511.CrossRefGoogle Scholar
  112. 112.
    Miller LH, Usami S, Chien S. Alteration in the rhéologic properties of Plasmodium knowlesi-infected red cells: a possible mechanism for capillary obstruction. J Clin Invest. 1971;50:1451–1460.PubMedCrossRefGoogle Scholar
  113. 113.
    Nash GB, Shearman CP. Neutrophils and peripheral arterial disease. Crit Ischaemia. 1992;2:15–21.Google Scholar
  114. 114.
    Nash GB, Thomas PRS, Dormandy JA. Abnormal flow properties of white blood cells in patients with severe ischaemia of the leg. BMJ. 1988;296:1699–1701.PubMedCrossRefGoogle Scholar
  115. 115.
    National Institute of Neurological and Communicative Disorders and Stroke. The National Survey of Stroke. Stroke. 1981;12(suppl):23–24.Google Scholar
  116. 116.
    Neri Serneri GG, Abbate R, Gori AM, Gensini GF. A transient, intermittent lymphocyte activation is responsible for the instability of angina. Circulation. 1992;85:1200–1220.Google Scholar
  117. 117.
    Neri Serneri GG, Gensini GF, Poggesi L, et al. The role of extraplatelet thromboxane A2 in unstable angina investigated with a dual thromboxane A2 inhibitor: importance of activated monocytes. Coron Artery Dis. 1994;5:137–145.CrossRefGoogle Scholar
  118. 118.
    Newmann V, Cove DH, Shapiro LM, et al. Effect of ticlopidine on platelet function and blood rheology in diabetes mellitus. Clinical Hemorheology. 1983;3:13–16.Google Scholar
  119. 119.
    Nicolaides AN, Bowers R, Horbourne T, Kidner PH, Bestermann EM. Blood viscosity, red cell flexibility, haematocrit, and plasma fibrinogen in patients with angina. Lancet. 1977;2:943–945.PubMedCrossRefGoogle Scholar
  120. 120.
    Owen JS, Bruckdorfer KR, Day RC, McIntyre N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J Lipid Res. 1982;23:124–132.PubMedGoogle Scholar
  121. 121.
    Ozanne P, Francis RB, Meiselman HJ. Red blood cell aggregation in nephrotic syndrome. Kidney Int. 1983;23:519–525.PubMedCrossRefGoogle Scholar
  122. 122.
    Parnetti L, Ciuffetti G, Senin U. Chronic cerebrovascular disorders: hemorheological and psychobehavioural aspects. Gerontology. 1986;32:228–230.PubMedCrossRefGoogle Scholar
  123. 123.
    Perry MA, Granger DN. Role of CD11/CD18 in shear rate dependent leukocyte-endothelial interactions in cat mesenteric venules. J Clin Invest. 1991;87:1798–1804.PubMedCrossRefGoogle Scholar
  124. 124.
    Reizenstein P. The haematological stress syndrome. Br J Haematol. 1979;43:329–334.PubMedCrossRefGoogle Scholar
  125. 125.
    Richardson SGN, Matthews KB, Stuart J, Geddes AM, Wilcox RM. Serial changes in coagulation and viscosity during sickle cell crisis. Br J Haematol. 1979;41:95–103.PubMedCrossRefGoogle Scholar
  126. 126.
    Schmid-Schoenbein H, Gaehtgens P, Hirsch H. On the shear rate dependence of red cell aggregation in vitro. J Clin Invest. 1968;47:1447–1500.CrossRefGoogle Scholar
  127. 127.
    Schmid-Schoenbein H, Rieger H. Isovolaemic Haemodilution. In: Lowe GDO, Barbenel JC, Forbes CD, eds. Clinical Aspects of Blood Viscosity and Cell Deformability. Berlin: Springer-Verlag; 1981:211–226.CrossRefGoogle Scholar
  128. 128.
    Schmid-Schoenbein H, Teitel P. In vitro assessment of “covertly abnormal” blood rheology; critical appraisal of presently available microrheological methodology. A review focussing on diabetic retinopathy as a possible consequence of rheological occlusion. Clinical Hemorheology. 1987;7:203–238.Google Scholar
  129. 129.
    Schoen RG, Wells CH, Kolman SN. Viscometric and microcirculatory observations following flame injury. J Trauma. 1971;11:619–626.PubMedCrossRefGoogle Scholar
  130. 130.
    Scholz PM, Karis JH, Gump FE, Kinney JM, Chien S. Correlation of blood rheology with vascular resistance in critically ill patients. J Appl Physiol. 1975;39:1008–1011.PubMedGoogle Scholar
  131. 131.
    Seplowitz AH, Chien S, Smith FR. Effects of lipoproteins on plasma viscosity. Atherosclerosis. 1981;38:89–95.PubMedCrossRefGoogle Scholar
  132. 132.
    Shearn MA, Epstein WV, Engleman EP. Serum viscosity in rheumatic diseases and macroglobulinaemia. Arch Intern Med. 1963;112:98–100.Google Scholar
  133. 133.
    Solomon A, Fahey IL. Plasmapheresis therapy in macroglobulinemia. Ann Intern Med. 1963;58:799–804.Google Scholar
  134. 134.
    Stoltz JF, Gaillard S, Rousselle D, Voisin P, Drouin P. Rheological study of blood during primary hyperlipoproteinaemia. Clinical Hemorheology. 1981;1:227–234.Google Scholar
  135. 135.
    Stuart J. The acute phase reaction and haematological stress syndrome in vascular disease. Int J Microcirc Clin Exp. 1984;3:115–129.PubMedGoogle Scholar
  136. 136.
    Stuart J, Juhan-Vague I. Erythrocyte rheology in diabetes mellitus. Clinical Hemorheology. 1987;7:239–245.Google Scholar
  137. 137.
    Theiss W, Volger E, Wirtzfeid A, Kiesel I, Bloemer H. Coagulation studies and rheological measurements during Streptokinase therapy of myocardial infarction. Klinische Wochenschrift. 1980;58:607–609.PubMedCrossRefGoogle Scholar
  138. 138.
    Turitto VT, Baumgartner HR. Platelet adhesion. In: Harker GF, Zimmermann BD, eds. Measurements of Platelet Function. Edinburgh: Churchill Livingstone; 1983:46–63.Google Scholar
  139. 139.
    Twigley AJ, Hillmann KM. The end of the crystalloid era? A new approach to perioperative fluid administration. Anaesthesia. 1985;40:860–871.PubMedCrossRefGoogle Scholar
  140. 140.
    Udden MM, O’Rear EA, Kegel H, McIntire LV, Lynch EC. Decreased deformability of erythrocytes and increased intracellular calcium in patients with chronic renal failure. Clinical Hemorheology. 1984;4:473–481.Google Scholar
  141. 141.
    Ward A, Clissold SP. Pentoxifylline: a review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs. 1987;34:50–97.PubMedCrossRefGoogle Scholar
  142. 142.
    Whittington RB, Harkness J. Whole blood viscosity, as determined by plasma viscosity, hematocrit, and shear. Biorheology. 1982;19:175–184.PubMedGoogle Scholar
  143. 143.
    Wurzinger LJ, Opitz R, Blasberg P, Eschweiler H, Schmid-Schoenbein H. The role of hydrodynamic factors in platelet activation and thrombotic events: the effects of shear stress of short duration. In: Schettler AC, Nerem FJ, Schmid-Schoenbein H, Morl R, Diehm C, eds. Fluid Dynamics as a Localizing Factor in Atherosclerosis. Berlin: Springer-Verlag; 1983:91–102.CrossRefGoogle Scholar
  144. 144.
    Zingg W, Suler JC, Morgan CD. Relationship between viscosity and hematocrit in blood of normal persons and burn patients. Can J Physiol Pharmacol. 1970;48:202–210.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Giovanni Ciufetti
  • Rita Lombardini

There are no affiliations available

Personalised recommendations