Regulation of Vascular Tone and Capillary Perfusion

  • Silvia Bertuglia
  • Antonio Colantuoni
  • Marcos Intaglietta

Abstract

The regulation of tissue perfusion takes place in the microcirculation, where the delivery of blood is controlled at the level of arterioles. These vessels contract and relax over a wide range of luminal dimensions; this property, termed tone, constitutes the primary mechanism for the control of blood flow in the peripheral circulation. This active diameter variability is due to smooth muscle present in the arteriolar wall that responds to differentiated stimuli, namely (1) a pressure-dependent response termed myogenic property, (2) a neural mechanism due to the activity of the autonomic nervous system, (3) a hormonal mechanism due to circulating hormones, (4) a local metabolic regulation, (5) endothelial products, and (6) flow-mediated diameter variability.

Keywords

Serotonin Retina Nitrite Angiotensin Luminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altura BM, Altura BT. Actions of vasopressin, oxytocin, and synthetic analogs on vascular smooth muscle. Fed Proc. 1984;43:80–86.PubMedGoogle Scholar
  2. 2.
    Ayajiki K, Kindermann M, Kecker M, et al. Intracellular pH and tyrosine phosphorylation but not calcium determine shear-stress induced nitric oxide production in native endothelial cells. Circ Res. 1996;78:750–758.PubMedCrossRefGoogle Scholar
  3. 3.
    Baez S, Laidlaw Z, Orkin LR. Localization and measurement of microcirculatory response to venous pressure elevation in the rat. Blood Vessels. 1974;11:260–276.PubMedGoogle Scholar
  4. 4.
    Baez S, Lamport H, Baez A. Pressure effects in microscopic blood vessels. In: Copley AL, Stainsby G, eds. Flow Properties of Blood and Other Biological Systems. Oxford, England: Pergamon Press; 1960:122–136.Google Scholar
  5. 5.
    Bassenge E, Heusch G. Endothelial and neurohumoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol. 1990;116:79–163.Google Scholar
  6. 6.
    Bayliss WM. On the local reaction of the arterial wall to changes in internal pressure. J Physiol Lond. 1902;28:220–321.PubMedGoogle Scholar
  7. 7.
    Berne RM, Winn HR, Rubio R. Metabolic regulation of cerebral blood flow. In: Vanhoutte PM, Leusen I, eds. Vasodilation. New York, NY: Raven Press; 1981:231–241.Google Scholar
  8. 8.
    Bertuglia S, Colantuoni A, Coppini G, et al. Hypoxia-or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation. Am J Physiol. 1991;260: H362–H372.PubMedGoogle Scholar
  9. 9.
    Bertuglia S, Colantuoni A, Intaglietta M. Effect of leukocyte adhesion and microvascular permeability on capillary perfusion during ischemia-reperfusion injury in hamster cheek pouch. Int J Microcirc Clin Exp. 1993;13:13–27.PubMedGoogle Scholar
  10. 10.
    Bertuglia S, Colantuoni A, Intaglietta M. Effects of L-NMMA and indomethacin on arteriolar vasomotion in skeletal muscle microcirculation of conscious and anesthetized hamsters. Microvasc Res. 1994;48:68–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Bevan JA. Selective action of diltiazem on cerebral vascular smooth muscle in the rabbit: antagonism of extrinsic but not intrinsic maintained tone. Am J Cardiol. 1982;49:52–59.CrossRefGoogle Scholar
  12. 12.
    Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992;44:1–80.PubMedGoogle Scholar
  13. 13.
    Bolton TB. Mechanism of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979;59:606–718.PubMedGoogle Scholar
  14. 14.
    Bosman J, Slaaf DW, Tangelder GJ, et al. Oxygen tension influences the flow cessation phenomenon and capillary diameter in skeletal muscle capillaries of anesthetized rabbits [abstract]. Int J Microcirc Clin Exp. 1992;11(suppl 1):42.Google Scholar
  15. 15.
    Boswell CA, Joris I, Majno G. The concept of cellular tone: reflection on the endothelium, fibroblasts, and smooth muscle cells. Perspect Biol Med. 1992;36:79–86.PubMedGoogle Scholar
  16. 16.
    Boswell CA, Majno G, Joris I, et al. Acute endothelial cell contraction in vitro: a comparison with fibroblasts and smooth muscle cells. Microvasc Res. 1992;43:178–191.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol. 1988;254:H401–H410.PubMedGoogle Scholar
  18. 18.
    Cabell F, Weiss DS, Price JM. Inhibition of adenosine-induced coronary vasodilatation by block of large conductance Ca2+-activated K+ channels. Am J Physiol. 1994;267:H1455–1460.PubMedGoogle Scholar
  19. 19.
    Carter TD, Hallam TJ, Pearson JD. Protein kinase C activation alters the sensitivity of agonist stimulated endothelial cell prostacyclin production to intracellular ionised calcium. Biochem J. 1989;262:431–437.PubMedGoogle Scholar
  20. 20.
    Casey PJ, Gilman AG. G protein involvement in receptor effector coupling. J Biol Chem. 1988;263:2577–2580.PubMedGoogle Scholar
  21. 21.
    Cauvin C. Theoretical bases for vascular selectivity of Ca2+ antagonists. J Cardiovasc Pharmacol. 1984;6:S630–S638.PubMedCrossRefGoogle Scholar
  22. 22.
    Christie PT, Simonson MS, Dunn MJ. Endothelin: receptors and transmembrane signals. News in Physiological Sciences. 1992;7:207–212.Google Scholar
  23. 23.
    Christophe J, Waelbroek M, Chatelain P, et al. Heart receptors for VIP, PHI, and secretin are able to activate adenylate cyclase and mediate inotropic and chronotropic effects: species variations and physiopathology. Peptides. 1984;5:341–353.PubMedCrossRefGoogle Scholar
  24. 24.
    Clough G, Fraser PA, Smaje LH. Compliance measurements in single capillaries of the cat mesentery. J Physiol. 1974;240:1–2.Google Scholar
  25. 25.
    Clutter WE, Bier DM, Shah SD, et al. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in male. J Clin Invest. 1980;66:94–101.PubMedCrossRefGoogle Scholar
  26. 26.
    Cohen RA, Van houtte PM. Endothelium-dependent hy-perpolarization beyond nitric oxide and cyclic GMP. Circulation. 1995;92:3337–3349.PubMedCrossRefGoogle Scholar
  27. 27.
    Colantuoni A, Bertuglia S, Intaglietta M. The effects of α-or β-adrenergic receptor agonists and antagonists and calcium entry blockers on the spontaneous vasomotion. Microvasc Res. 1984;28:143–158.PubMedCrossRefGoogle Scholar
  28. 28.
    Colantuoni A, Bertuglia S, Intaglietta M. Quantitation of rhythmic diameter changes in arterial microcirculation. Am J Physiol. 1984;246:H508–H517.PubMedGoogle Scholar
  29. 29.
    Colantuoni A, Bertuglia S, Intaglietta M. Microvessel diameter changes during hemorrhagic shock in unanesthetized hamsters. Microvasc Res. 1985;30:133–142.PubMedCrossRefGoogle Scholar
  30. 30.
    Colantuoni A, Bertuglia S, Intaglietta M. Variations of rhythmic diameter changes at the arterial microvascular bifurcations. Pflügers Arch. 1985;403:289–295.PubMedCrossRefGoogle Scholar
  31. 31.
    Colantuoni A, Bertuglia S, Intaglietta M. Microvascular vasomotion: origin of laser Doppler fluxmotion. Int J Microcirc Clin Exp. 1994;14:151–188.PubMedCrossRefGoogle Scholar
  32. 32.
    Davies PF, Barbie KA, Valen MV, et al. Spatial relationship in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol. 1997;59:527–549.PubMedCrossRefGoogle Scholar
  33. 33.
    Doyle VM, Ruegg UT. Vasopressin induced production of inositol triphosphate and calcium influx in smooth muscle cell line. Biochem Biophys Res Commun. 1985;131:469–476.PubMedCrossRefGoogle Scholar
  34. 34.
    Duling BR. Control of striated muscle blood flow. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. New York, NY: Raven Press; 1980:1497–1505.Google Scholar
  35. 35.
    Duling BR, Berne RM. Longitudinal gradients in periarte-riolar oxygen tension a possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res. 1970;27:669–678.PubMedCrossRefGoogle Scholar
  36. 36.
    Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation. 1992;85:893–904.PubMedCrossRefGoogle Scholar
  37. 37.
    Fagrell B. Vital microscopy: a clinical method for studying changes of skin microcirculation in patients suffering from vascular disorders of the leg. Angiology. 1972;23:284–298.CrossRefGoogle Scholar
  38. 38.
    Fagrell B. The skin microcirculation and the pathogenesis of ischemic necrosis and gangrene. Scand J Clin Lab Invest. 1977;37:473–476.PubMedCrossRefGoogle Scholar
  39. 39.
    Folkow B. A study of the factors regulating the tone of denervated blood vessels perfused at various pressure. Acta Physiol Scand. 1952;27:99–117.PubMedCrossRefGoogle Scholar
  40. 40.
    Folkow B. Description of the myogenic hypothesis. Circ Res. 1964;15(suppl 1):279–287.PubMedGoogle Scholar
  41. 41.
    Frangos JA, Eskin SG, McIntire LV, et al. Flow effect on prostacyclin production in cultured human endothelial cells. Science. 1985;227:1477–1479.PubMedCrossRefGoogle Scholar
  42. 42.
    Friesenecker B, Tsai AG, Intaglietta M. Capillary perfusion during ischemia reperfusion in subcutaneous connective tissue and skin muscle. Am J Physiol. 1994;267: H2204–H2212.PubMedGoogle Scholar
  43. 43.
    Fung YC, Zweifach BW, Intaglietta M. Elastic environment of the capillary bed. Circ Res. 1966;19:441–461.PubMedCrossRefGoogle Scholar
  44. 44.
    Furchgott RF. Studies on the relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that acid-activable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM, ed. Vasodilation: Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium. New York, NY: Raven Press; 1988:101–114.Google Scholar
  45. 45.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376.PubMedCrossRefGoogle Scholar
  46. 46.
    Gidlof A, Lewis DH, Hammersen F. The effect of total ischemia on the ultrastructure of human skeletal muscle capillaries: a morphometric analysis. Int J Microcirc Clin Exp. 1987;7:62–67.Google Scholar
  47. 47.
    Gotlieb AI, Wong MKK. Current concepts on the role of endothelial cytoskeleton in endothelial integrity, repair, and dysfunction. In: Ryan US, ed. Endothelial Cells. Boca Raton, Fla: CRC Press; 1988:81–101.Google Scholar
  48. 48.
    Greenfield ADM, Patterson GC. Reactions of the blood vessels of the human forearm to increases in transmural pressure. J Physiol Lond. 1954;125:508–524.PubMedGoogle Scholar
  49. 49.
    Griffith TM, Edwards DH, Lewis MJ, et al. Evidence that cyclic guanosine monophosphate (cGMP) mediated endothelium-dependent relaxation. Eur J Pharmacol. 1985;112:195–202.PubMedCrossRefGoogle Scholar
  50. 50.
    Harper S, Bohelen H, Rubin M. Arterial and microvascular contribution to cerebral cortical autoregulation in rats. Am J Physiol. 1984;246:H17–H24.PubMedGoogle Scholar
  51. 51.
    Henquell L, La Celle PL, Honig GR. Capillary diameter in rat heart in situ: relation to erythrocyte deformability, O2 transport, and transmural O2 gradients. Microvasc Res. 1976;12:259–274.PubMedCrossRefGoogle Scholar
  52. 52.
    Hibbs JB Jr. Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res Immunol. 1991;142:565–569.PubMedCrossRefGoogle Scholar
  53. 53.
    Hirsch A, Majzoub T, Ren CJ, et al. Contribution of vasopressin to blood pressure regulation during hypovolemic hypotension in humans. J Appl Physiol. 1993;75:1984–1988.PubMedGoogle Scholar
  54. 54.
    Intaglietta M. Measurement of fluid exchange between single capillaries and tissue in vivo. In: Kaley G, Altura B, eds. Microcirculation. Vol 3. Baltimore, Md: University Park Press; 1980:393–406.Google Scholar
  55. 55.
    Intaglietta M. Vasomotor activity, time dependent fluid exchange, and tissue pressure. Microvasc Res. 1981;21:153–164.PubMedCrossRefGoogle Scholar
  56. 56.
    Intaglietta M, Breit GA. Chaos and microcirculatory control. In: Messmer K, ed. Capillary Functions and White Cell Interaction. Prog Appl Microcirc 18. Basel, Switzerland: S. Karger; 1991:22–32.Google Scholar
  57. 57.
    Intaglietta M, Richardson DR, Tompkins WR. Blood pressure, flow, and elastic properties of microvessels of cat omentum. Am J Physiol. 1971;221:922–928.PubMedGoogle Scholar
  58. 58.
    Ishikawa T, Hume JR, Keef KD. Regulation of Ca2+ Channels by cAMP and cGMP in vascular smooth muscle. Circ Res. 1993;73:1128–1137.PubMedCrossRefGoogle Scholar
  59. 59.
    Jackson WF, Duling BR. The oxygen sensitivity of hamster cheek pouch arterioles: in vitro and in vivo studies. Circ Res. 1983;53:515–525.PubMedCrossRefGoogle Scholar
  60. 60.
    Johnson PC. The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV Jr., eds. Handbook of Physiology. The Cardiovascular System: Vascular Smooth Muscle. Bethesda, Md: American Physiological Society; 1980:409–442.Google Scholar
  61. 61.
    Johnson PC. The myogenic response: in vivo studies. In: Bevan JA, Halpern W, Mulvany MJ, eds. The Resistance Vasculature. Totawa, NJ: Humana Press; 1988:159–168.Google Scholar
  62. 62.
    Johnson PC, Intaglietta M. Contribution of pressure and flow sensitivity to autoregulation in mesenteric arterioles. Am J Physiol. 1976;231:1686–1698.PubMedGoogle Scholar
  63. 63.
    Jones TW. The discovery that veins of the bat’s wing (which are furnished with valves) are endowed with rhythmical contractility and the onward flow of blood is accelerated with each contraction. Phil Trans. 1852;1:131–136.CrossRefGoogle Scholar
  64. 64.
    Kiel JW, Riedel GL, Shepherd AP. Local control of canine gastric mucosal blood flow. Gastroenterology. 1987;93:1041–1053.PubMedGoogle Scholar
  65. 65.
    Koller A, Kaley G. Prostaglandins mediate arteriolar dilatation to increased blood flow velocity in skeletal muscle microcirculation. Circ Res. 1990;67:529–534.PubMedCrossRefGoogle Scholar
  66. 66.
    Krogh A. The Anatomy and Physiology of Capillaries. New York, NY: Hatner; 1959.Google Scholar
  67. 67.
    Kuo L, Davis MJ, Chilian WM. Endothelium-dependent, flow induced dilation of isolated coronary arterioles. Am J Physiol. 1990;259:H1063–H1070.PubMedGoogle Scholar
  68. 68.
    Langer SZ, Schoemaker H. α-Adrenoceptor subtypes in blood vessels: physiology and pharmacology. Clin Exp Hypertens. 1989;11:21–30.CrossRefGoogle Scholar
  69. 69.
    Lefer AM, Lefer DJ. Pharmacology of endothelium in ischemia reperfusion and circulatory shock. Annu Rev Pharmacol Toxicol. 1991;33:71–90.CrossRefGoogle Scholar
  70. 70.
    Leusen I, Van de Voorde J. Endothelium-dependent responses to histamine. In: Vanhoutte PM, ed. Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomic Nerves, and Endothelium. New York, NY: Raven Press; 1988:469–474.Google Scholar
  71. 71.
    Lindbom L, Arfors KE. Mechanism and site of control for variation in the number of perfused capillaries in skeletal muscle. Int J Microcirc Clin Exp. 1985;4:121–127.Google Scholar
  72. 72.
    Maekiti J. Microvasculature of rat striated muscle after temporary ischemia. Acta Neuropathol. 1977;37:247–253.CrossRefGoogle Scholar
  73. 73.
    Martin W, White DG, Henderson AH. Endothelium-derived relaxing factor and atriopeptin II elevates cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol. 1988;93:229–239.PubMedCrossRefGoogle Scholar
  74. 74.
    Mazzoni MC, Borgstrom P, Intaglietta M, et al. Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock. 1989;29:27–39.PubMedGoogle Scholar
  75. 75.
    Mazzoni MC, Lundgren E, Arfors KE, et al. Volume changes of an endothelial cell monolayer on exposure to anisotonic media. J Cell Physiol. 1989;140:272–280.PubMedCrossRefGoogle Scholar
  76. 76.
    McDonald TF, Pelzer S, Trautwein W, et al. Regulation and modulation of calcium channels in cardiac muscle, skeletal muscle, and smooth muscle. Phys Rev. 1994;74:365–463.Google Scholar
  77. 77.
    Menger MD, Sacks FU, Barker JH, et al. Quantitative analysis of microcirculatory disorders after prolonged ischemia in skeletal muscle: therapeutic effects of prophylactic isovolemic hemodilution. Res Exp Med. 1988;188:151–165.CrossRefGoogle Scholar
  78. 78.
    Menger MD, Steiner D, Messmer K. Microvascular ischemia-reperfusion injury in striated muscle: significance of no reflow. Am J Physiol. 1992;263:H1892–H1900.PubMedGoogle Scholar
  79. 79.
    Meyer JU, Borgstrom M, Lindbom L, et al. Vasomotion patterns in skeletal muscle arterioles during changes in arterial pressure. Microvasc Res. 1988;35:193–203.PubMedCrossRefGoogle Scholar
  80. 80.
    Meyer JU, Lindbom L, Intaglietta M. Coordinated diameter oscillations at arteriolar bifurcations in skeletal muscle. Am J Physiol. 1987;253:H568–H573.PubMedGoogle Scholar
  81. 81.
    Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968;20:117–196.PubMedGoogle Scholar
  82. 82.
    Messina EJ, Sun D, Koller A, et al. Increases in oxygen tension evoke arteriolar constriction by inhibiting endothelial prostaglandin synthesis. Microvasc Res. 1994;48:151–160.PubMedCrossRefGoogle Scholar
  83. 83.
    Mohrman DE. Adenosine handling in interstitia of cremaster muscle studied by bioassay. Am J Physiol. 1988;254: H369–H376.PubMedGoogle Scholar
  84. 84.
    Moncada S, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine. Biochem Pharmacol. 1989;3:1867–1869.Google Scholar
  85. 85.
    Moncada S, Palmer RMJ, Higgs EH. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1990;43:109–142.Google Scholar
  86. 86.
    Muller JM, Davis MJ, Chilian WM. Coronary arteriolar flow-induced vasodilation signals through tyrosine kinase. Am J Physiol. 1996;270:H1878–1884.PubMedGoogle Scholar
  87. 87.
    Nelson MT, Patlak JB, Worley JF, et al. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C13–C18.Google Scholar
  88. 88.
    O’Connor SE, Wood BE, Leff P. Characterization of P2x-receptors in rabbit isolated ear artery. Br J Pharmacol. 1990;101:640–644.PubMedCrossRefGoogle Scholar
  89. 89.
    Osol G. Myogenic properties of blood vessels in vivo. In: Bevan JA, Halpern W, Mulvany MJ, eds. The Resistance Vasculature. Totawa, NJ: Humana Press; 1988;143–157.Google Scholar
  90. 90.
    Owen M, Walmsley J, Mason M, et al. Adrenergic control in three segments of diminishing diameter in rabbit ear. Am J Physiol. 1983;245:H508–H517.Google Scholar
  91. 91.
    Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium derived relaxing factor. Nature. 1987;327:524–526.PubMedCrossRefGoogle Scholar
  92. 92.
    Pernow J, Lundberg JM. Release and vasoconstrictor effects of neuropeptide Y in relation to non-adrenergic sympathetic control of renal blood flow in the pig. Acta Physiol Scand. 1989;136:507–517.PubMedCrossRefGoogle Scholar
  93. 93.
    Popel AS. Theory of oxygen transport to tissue. Crit Rev Biomed Eng. 1989;17:257–321.PubMedGoogle Scholar
  94. 94.
    Potter RJ, Dietrich HH, Tyml K, et al. Ischemia reperfusion induced microvascular dysfunction in skeletal muscle: application of intravital microscopy. Int J Microcirc Clin Exp. 1993;13:173–186.PubMedGoogle Scholar
  95. 95.
    Potter RF, Groom AC. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res. 1983;25:68–84.PubMedCrossRefGoogle Scholar
  96. 96.
    Quinones-Baldrich WJ, Chervu A, Hernandez JJ, et al. Skeletal muscle function after ischemia: “no-reflow” versus reperfusion injury. J Surg Res. 1991;51:5–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Rankumar V, Pierson G, Stiles GL. Adenosine receptors: clinical implications and biochemical mechanisms. Prog Drug Res. 1988;32:196–245.Google Scholar
  98. 98.
    Rapoport MD, Murad F. Agonist induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983;52:352–357.PubMedCrossRefGoogle Scholar
  99. 99.
    Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262:E763–E778.PubMedGoogle Scholar
  100. 100.
    Rusch NJ, Hermsmeyer K. Vasopressin induced rhythmic activity in rat basilar artery. Ann Biomed Eng. 1985;13:295–302.PubMedCrossRefGoogle Scholar
  101. 101.
    Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev. 1992;44:479–602.PubMedGoogle Scholar
  102. 102.
    Salerud GE, Tenland T, Nilsson GE, et al. Rhythmical variations in human skin microcirculation. Int J Microcirc Clin Exp. 1983;2:91–102.PubMedGoogle Scholar
  103. 103.
    Secomb TW, Fleischman GJ, Papenfuss HD, et al. Effects of reduced perfusion and hematocrit on flow distribution in capillary networks. In: Messmer K, Hemmezsen F, eds. Microcirculation and Inflammation: Vessel Wall-Inflammatory Cells-Mediator Interactions. Prog Appl Microcirc 12. Basel, Switzerland: S. Kruger; 1987;205–211.Google Scholar
  104. 104.
    Segal SS, Duling BR. Propagation of vasodilation in resistance vessels of the hamster: development and review of a working hypothesis. Circ Res. 1987;61:20–25.CrossRefGoogle Scholar
  105. 105.
    Siegel G, Ebeling BJ, Hofer HW. Foundation of vascular rhythm. Ber Bunsenges Phys Chem. 1980;84:403–406.CrossRefGoogle Scholar
  106. 106.
    Skoftisch G, Jacobowitz D. Calcitonin gene related peptide coexists with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. Peptides. 1985;6:747–754.CrossRefGoogle Scholar
  107. 107.
    Smiesko NPS, Johnson PC. The arterial lumen is controlled by flow related shear stress. NIPS. 1993;8:34–38.Google Scholar
  108. 108.
    Sparks HV. Effect of local metabolic factors on vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV Jr., eds. Handbook of Physiology. The Cardiovascular System: Vascular Smooth Muscle. Bethesda, Md: American Physiological Society; 1980:475–513.Google Scholar
  109. 109.
    Suval WD, Hobson RW, Boric MP, et al. Assessment of ischemia reperfusion injury in skeletal muscle by macro-molecular clearance. J Surg Res. 1987;42:550–559.PubMedCrossRefGoogle Scholar
  110. 110.
    Swayne GTC, Smaje LH, Bergel DH. Distensibility of single capillaries and venules in the rat and frog mesentery. Int J Microcirc Clin Exp. 1989;8:25–42.PubMedGoogle Scholar
  111. 111.
    Üvnas B. (1988) Cholinergic vasodilator nerves. Fed Proc. 1966;25:1618–1622.PubMedGoogle Scholar
  112. 112.
    Vanhoutte PM. Heterogeneity in vascular, smooth muscle. In: Kaley G, Altura BM, eds. Microcirculation. Vol 2. Baltimore, Md: University Park Press; 1978:181–309.Google Scholar
  113. 113.
    Vanhoutte PM. Endothelium-Derived Hyperpolarizing Factor. Richmond, Calif: Berlex Biosciences; 1997.Google Scholar
  114. 114.
    Vanhoutte PM, Luscher TF. Serotonin and the blood vessel wall. J Hypertens. 1986;4:29–36.Google Scholar
  115. 115.
    Weiner RM, Borgstrom P, Intaglietta M. Induction of vasomotion by hemorrhagic hypotension in rabbit tenuissimus muscle. In: Intaglietta M, ed. Vasomotion and Flow-motion in the Microcirculation. Basel, Switzerland: Karger; 1989:93–99.Google Scholar
  116. 116.
    Weyrich A, Ma XI, Lefer AM. The role of L-arginine in ameliorating reperfusion injury following myocardial ischemia in the cat. Circulation. 1992;86:2665–2674.CrossRefGoogle Scholar
  117. 117.
    Wilkin JK. Periodic cutaneous blood flow during post occlusive reactive hyperemia. Am J Physiol. 1986;250: H756–H768.Google Scholar
  118. 118.
    Wright JG, Fox D, Kerr JC, et al. Rate of reperfusion blood flow modulates reperfusion injury in skeletal muscle. J Surg Res. 1988;44:754–763.PubMedCrossRefGoogle Scholar
  119. 119.
    Zweifach BW, Lee RE, Hyman C, et al. Omental microcirculation in morphinized dogs subjected to graded haemorrhage. Ann Surg. 1944;120:250–273.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Silvia Bertuglia
  • Antonio Colantuoni
  • Marcos Intaglietta

There are no affiliations available

Personalised recommendations