Nuclear Cardiology

  • Hans Martin Hoffmeister

Abstract

Nuclear cardiology is a discipline that involves cardiology and nuclear medicine. It developed as a new field in the 1970s with the introduction of several radiopharma-ceutical agents for cardiac imaging and with ongoing progress in the development of camera systems and dedicated computers. The scope of the procedures includes not only diagnostic approaches to identify patients with coronary heart disease, but more dedicated tools to characterize regional perfusion and metabolic and functional status of the left ventricular myocardium in order to optimize the diagnostic and therapeutic strategies in patients with cardiac diseases. The techniques are also used to obtain information on prognosis and are recommended for risk stratification in various patient groups. In this chapter, radiopharmaceuticals and camera systems are introduced first, followed by a description of imaging modalities. Clinical applications of the methods are described thereafter.

Keywords

Attenuation Gallium Diol Palmitate Melon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielson AP, Morritz KG, Murdock R, et al. Linear relationship between the distribution of thallium-201 and blood flow in ischemic and nonischemic myocardium during exercise. Circulation. 1980;61:769–772.Google Scholar
  2. 2.
    Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation. 1977;56:188–191.PubMedCrossRefGoogle Scholar
  3. 3.
    Iskandrian AD, Verani MS. Nuclear Cardiac Imaging: Principles and Applications. Philadelphia, Pa: FA Davis; 1996.Google Scholar
  4. 4.
    Weiss AT, Maddahi J, Lew AS, et al. Reverse redistribution of thallium-201. A sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol. 1986;7:61–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Leppo JA, O’Brien J, Rothendler JA, Getchell JD, Lee VW. Dipyridamole-thallium-201 scintigraphy in the prediction of future cardiac events after acute myocardial infarction. N Engl J Med. 1984;310:1014–1018.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu P, Burns RJ. Easy come, easy go: time to pause and put thallium reverse redistribution in perspective. J Nucl Med. 1993;34:1692–1694.PubMedGoogle Scholar
  7. 7.
    Marin-Neto JA, Dilsizian V, Arrighi JA, et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation. 1993;88:1736–1745.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonow RO, Dilsizian V, Cuocolo A, Bacharach SI. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with F-18 fluorodeoxyglucose. Circulation. 1991;83:26–37.PubMedCrossRefGoogle Scholar
  9. 9.
    Dilsizian V, Rocco TP, Freedman NMT, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990;323:141–146.PubMedCrossRefGoogle Scholar
  10. 10.
    Dilsizian V, Smeltzer WR, Freedman NT, Dextras R, Bonow RO. Thallium reinjection after stress-redistribution imaging: does 24-hour delayed imaging following reinjection enhance detection of viable myocardium? Circulation. 1991;83:1247–1255.PubMedCrossRefGoogle Scholar
  11. 11.
    Dilsizian V, Bonow RO. Differential uptake and apparent Tl-201 washout after thallium reinjection: options regarding early redistribution imaging before reinjection or late redistribution imaging after reinjection. Circulation. 1992;85:1032–1038.PubMedCrossRefGoogle Scholar
  12. 12.
    Dilsizan V, Freedman NT, Bacharach SL Perrone-Filardi P, Bonow RO. Regional thallium uptake in irreversible defects: magnitude of change in thallium activity after reinjection distinguishes viable from nonviable myocardium. Circulation. 1992;85:627–634.CrossRefGoogle Scholar
  13. 13.
    Wackers FJT, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison of thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989;30:301–311.PubMedGoogle Scholar
  14. 14.
    Glover DK, Ruiz M, Edwards NC, et al. Comparison between thallium-201 and Tc-99m sestamibi uptake during adenosine-induced vasodilation as a function of coronary stenosis severity. Circulation. 1995;91:813–820.PubMedCrossRefGoogle Scholar
  15. 15.
    Melon PG, Beanlands RS, Degrado TR, Nguyen N, Petry NA, Schwaiger M. Comparison of technetium-99m sestamibi and thallium-201 retention characteristics in canine myocardium. J Am Coll Cardiol. 1992;20:1277–1283.PubMedCrossRefGoogle Scholar
  16. 16.
    Marshall RC, Leidholdt EM, Zhang DY, Barnett CA. Technetium-99m hexakis 2-methoxy-2-isobutyl isonitrile and thallium-201 extraction, washout, and retention at varying coronary flow rates in rabbit heart. Circulation. 1990;82:998–1007.PubMedCrossRefGoogle Scholar
  17. 17.
    Chua T, Kiat H, Germano G, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. J Am Coll Cardiol. 1994;23:1107–1114.PubMedCrossRefGoogle Scholar
  18. 18.
    Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease. Circulation. 1994;89:578–587.PubMedCrossRefGoogle Scholar
  19. 19.
    Kauffman GJ, Boyne TS, Watson DD, Smith WH, Beller GA. Comparison of rest thallium-201 imaging and rest technetium-99m sestamibi imaging for assessment of myocardial viability in patients with coronary artery disease and severe left ventricular dysfunction. J Am Coll Cardiol. 1996;27:1592–1597.PubMedCrossRefGoogle Scholar
  20. 20.
    Marzullo P, Sambuceti G, Parodi O. The role of sestamibi scintigraphy in the radioisotopic assessment of myocardial viability. J Nucl Med. 1992;33:1925–1930.PubMedGoogle Scholar
  21. 21.
    Maurea S, Cuocolo A, Pace L, et al. Left ventricular dysfunction in coronary artery disease: comparison between rest-redistribution thallium-201 and resting technetium 99m methoxyisobutyl isonitrile cardiac imaging. J Nucl Cardiol. 1994;1:165.CrossRefGoogle Scholar
  22. 22.
    Sinusas AJ, Bergin JD, Edwards NC, et al. Redistribution of Tc-99m sestamibi and Tl-201 in the presence of a severe coronary artery stenosis. Circulation. 1994;89:2332–2341.PubMedCrossRefGoogle Scholar
  23. 23.
    Udelson JE, Coleman PS, Metherall J, et al. Predicting recovery of severe regional ventricular dysfunction. Circulation. 1994;89:2552–2561.PubMedCrossRefGoogle Scholar
  24. 24.
    DiRocco RJ, Rumsey WL, Kuczynski BL, et al. Measurement of myocardial blood flow using a co-injection technique for technetium-99m teboroxime, technetium-96-sestamibi and thallium-201. J Nucl Med. 1992;33:1152–1159.Google Scholar
  25. 25.
    Stewart RE, Heyl B, O’Rourke RA, Blumhardt R, Miller DD. Demonstration of differential post-stenotic myocardial technetium-99m teboroxime clearance kinetics after experimental ischemia and hyperemia stress. J Nucl Med. 1991;32:2000–2008.PubMedGoogle Scholar
  26. 26.
    Seldin DW, Johnson LL, Blood D, et al. Myocardial perfusion imaging with technetium-99m SQ30217: comparison with thallium-201 and coronary anatomy. J Nucl Med. 1989;30:312–319.PubMedGoogle Scholar
  27. 27.
    Bisi G, Sciargrà R, Santoro GM, Zerauschek F, Fazzini PF. Sublingual isosorbide dinitrate to improve technetium-99m teboroxime perfusion defect reversibility. J Nucl Med. 1994;35:1274–1278.PubMedGoogle Scholar
  28. 28.
    Rigo P, Leclercq B, Itti R, Lakini A, Braat S. Technetium-99m-tetrofosmin myocardial imaging: a comparison with thallium-201 and angiography. J Nucl Med. 1994;35:587–593.PubMedGoogle Scholar
  29. 29.
    Zaret BL, Rigo P, Wackers FJT, et al. Myocardial perfusion imaging with Tc-99m tetrofosmin. Circulation. 1995;91:313–319.PubMedCrossRefGoogle Scholar
  30. 30.
    Marie PY, Angioi M, Danchin N, et al. Assessment of myocardial viability in patients with previous myocardial infarction by using single-photon emission computed tomography with a new metabolic tracer 123I-16-iodo-3-Methylhexadecanoic acid (MIHA). J Am Coll Cardiol. 1997;30:1241–1248.PubMedCrossRefGoogle Scholar
  31. 31.
    Esquerre JP, Coca FJ, Martinez SJ, Guiraud RF. Prone decubitus: a solution to inferior wall attenuation in thallium-201 myocardial tomography. J Nucl Med. 1989;30:398–401.PubMedGoogle Scholar
  32. 32.
    O’Connor MK, Bothun ED. Effects of tomographic table attenuation on prone and supine cardiac imaging. J Nucl Med. 1995;36:1102–1106.PubMedGoogle Scholar
  33. 33.
    Segal GM, Davis MJ. Prone versus supine thallium myocardial SPECT: a method to decrease artifactual inferior wall defects. J Nucl Med. 1989;30:548–555.Google Scholar
  34. 34.
    Suzuki A, Muto S, Oshima M, et al. A new scanning method for thallium-201 myocardial SPECT: semi-decubital position method. Clin Nucl Med. 1989;14:736–741.PubMedCrossRefGoogle Scholar
  35. 35.
    Nohara R, Kambara H, Suzuki Y. Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease. Am J Cardiol. 1984;53:1250–1254.PubMedCrossRefGoogle Scholar
  36. 36.
    Gottschalk SC, Salem D, Lim CB, Wake RH. SPECT resolution and uniformity improvements by noncircular orbit. J Nucl Med. 1983;24:822–828.PubMedGoogle Scholar
  37. 37.
    Coleman RE, Jaszczak RJ, Cobb FR. Comparison of 180 degree and 360 degree data collection in thallium-201 imaging using single-photon emission computerized tomography (SPECT): concise communication. J Nucl Med. 1982;23:655–660.PubMedGoogle Scholar
  38. 38.
    Bateman T, Garcia E, Maddahi J, et al. Clinical evaluation of sevenpinhole tomography for the detection and localization of coronary artery disease: comparison with planar imaging using quantitative analysis of myocardial thallium-201 distribution and washout after exercise. Am Heart J. 1983;106:263–271.PubMedCrossRefGoogle Scholar
  39. 39.
    Massie BM, Wisneski JA, Hollenberg M, Gertz EW, Henderson S. Quantitative analysis of seven-pinhole tomographic thallium-201 scintigrams: improved sensitivity and estimation of the extent of coronary involvement by evaluation of radiotracer uptake and clearance. J Am Coll Cardiol. 1984;3:1178–1186.PubMedCrossRefGoogle Scholar
  40. 40.
    Dahlberg ST, Leppo JA. Physiologic properties of myocardial perfusion tracers. Cardiol Clin. 1994;12:169–185.PubMedGoogle Scholar
  41. 41.
    Bateman TM, Maddahi J, Gray RJ, et al. Diffuse slow washout of myocardial thallium-201: a new scintigraphic indicator of extensive coronary artery disease. J Am Coll Cardiol. 1984;4:55–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Gerwitz H, Paladino W, Sullivan M, Most AS. Value and limitations of myocardial thallium washout rate in the noninvasive diagnosis of patients with triple-vessel coronary artery disease. Am Heart J. 1983;106:681–686.CrossRefGoogle Scholar
  43. 43.
    Sklar J, Kirch D, Johnson T, Hasegawa B, Peck S, Steele P. Slow late myocardial clearance of thallium: a characteristic phenomenon in coronary artery disease. Circulation. 1982;65:1504–1510.PubMedCrossRefGoogle Scholar
  44. 44.
    Vaduganathan P, He ZX, Raghavan C, Mahmarian JJ, Verani MS. Detection of left anterior descending coronary artery stenosis in patients with left bundle branch block: exercise, adenosine or dobutamine imaging. J Am Coll Cardiol. 1996;28:543–550.PubMedGoogle Scholar
  45. 45.
    Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation, III: clinical trial. Am J Cardiol. 1978;42:751–760.PubMedCrossRefGoogle Scholar
  46. 46.
    Coyne EB, Belvedere DA, Van de Streek PR, Weiland FL, Evans RB, Spaccavento LJ. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol. 1991;17:1289–1294.PubMedCrossRefGoogle Scholar
  47. 47.
    Emlein G, Villegas B, Dahlberg S, Leppo J. Left ventricular cavity size determined by preoperative dipyridamole thallium scintigraphy as a predictor of late cardiac events in vascular surgery patients. Am Heart J. 1996;131:907–914.PubMedCrossRefGoogle Scholar
  48. 48.
    Glover DK, Ruiz M, Bergmann EE, et al. Myocardial tech-netium-99m-teboroxime uptake during adenosine-induced hyperemia in dogs with either a critical or mild coronary stenosis: comparison to thallium-201 and regional blood flow. J Nucl Med. 1995;36:476–483.PubMedGoogle Scholar
  49. 49.
    Gould KL. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation: physiologic basis and experimental validation. Am J Cardiol. 1978;41:267–278.PubMedCrossRefGoogle Scholar
  50. 50.
    Gould KL, Westcott RJ, Albro PC, Hamilton GW. Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologie coronary vasodilatation, II: clinical methodology and feasibility. Am J Cardiol. 1978;41:279–287.PubMedCrossRefGoogle Scholar
  51. 51.
    Kumar EB, Steel SA, Howey S, Caplin JL, Aber CP. Dipyridamole is superior to dobutamine for thallium stress imaging: a randomised crossover study. British Heart Journal. 1994;71:129–134.PubMedCrossRefGoogle Scholar
  52. 52.
    Marwick T, Willemart B, D’Hondt AMD, et al. Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Circulation. 1982;87:345–354.CrossRefGoogle Scholar
  53. 53.
    Nguyen T, Heo J, Ogilby JD, Iskandrian AS. Single-photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography. J Am Coll Cardiol. 1990;16:1375–1383.PubMedCrossRefGoogle Scholar
  54. 54.
    Stratmann HG, Younis LT, Wittry MD, Amato M, Miller DD. Dipyridamole technetium-99m sestamibi myocardial tomography in patients evaluated for elective vascular surgery: prognostic value for perioperative and late cardiac event. Am Heart J. 1996;31:923–929.CrossRefGoogle Scholar
  55. 55.
    Verani MS, Mahmarian JJ, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation. 1990;82:80–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Nishimura S, Mahmarian JJ, Boyce TM, Verani MS. Quantitative thallium-201 single-photon emission computed tomography during maximal pharmacologie coronary vasodilation with adenosine for assessing coronary artery disease. J Am Coll Cardiol. 1991;18:736–745.PubMedCrossRefGoogle Scholar
  57. 57.
    Wackers FJT. Myocardial perfusion imaging. In: Gottschalk A, Hoffer PB, Potchen EJ, eds. Diagnostic Nuclear Medicine. 2nd ed. Baltimore, Md: Williams & Wilkins; 1988.Google Scholar
  58. 58.
    Nallamothu N, Araujo L, Russell J, Geo J, Iskandrian AE. Prognostic value of simultaneous perfusion and function assessment using Tc-99m sestamibi. Am J Cardiol. 1996;78:562–563.CrossRefGoogle Scholar
  59. 59.
    Garcia E, Maddahi J, Berman DS, Waxman A. Space/time quantitation of thallium-201 myocardial scintigraphy. J Nucl Med. 1981;22:309–317.PubMedGoogle Scholar
  60. 60.
    Wackers FJ, Fetterman RC, Mattera JA, Clements JP. Quantitative planar thallium-201 stress scintigraphy: a critical evaluation of the method. Semin Nucl Med. 1985;15:46–66.PubMedCrossRefGoogle Scholar
  61. 61.
    Reisman S, Maddahi J, van Train K, Garcia E, Berman D. Quantitation of extent, depth, and severity of planar thallium defects in patients undergoing exercise thallium-201 scintigraphy. J Nucl Med. 1986;27:1273–1281.PubMedGoogle Scholar
  62. 62.
    Akinboboye OO, Haines FA, Atkins HL, Oster ZH, Brown EJ. Assessment of left ventricular enlargement from planar thallium-201 images. Am Heart J. 1994;127:148–151.PubMedCrossRefGoogle Scholar
  63. 63.
    Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol. 1987;9:752–759.PubMedCrossRefGoogle Scholar
  64. 64.
    Boucher CA, Zir LM, Beller GA, et al. Increased lung uptake of thallium-201 during exercise myocardial imaging: clinical, hemodynamic and angiographie implications in patients with coronary artery disease. Am J Cardiol. 1980;46:189–196.PubMedCrossRefGoogle Scholar
  65. 65.
    Nishimura S, Mahmarian JJ, Verani MS. Significance of increased lung thallium uptake during adenosine thallium-201 scintigraphy. J Nucl Med. 1992;33:1600–1607.PubMedGoogle Scholar
  66. 66.
    Friedman J, Van Train K, Maddahi J, et al. “Upward creep” of the heart: a frequent source of false-positive reversible defects during thallium-201 stress-distribution SPECT. J Nucl Med. 1989;30:1718–1722.PubMedGoogle Scholar
  67. 67.
    Galli M, Marcassa C. Thallium-201 redistribution after early reinjection in patients with severe stress perfusion defects and ventricular dysfunction. Am Heart J. 1994;128:41–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Van Eck-Smit BLF, Van Der Wall EE, Zwinderman AH, Pauwels EIL Clinical value of immediate thallium-201 reinjection imaging for the detection of ischaemic heart disease. Eur Heart J. 1995;16:410–420.PubMedGoogle Scholar
  69. 69.
    Charney R, Schwinger ME, Chun J, et al. Dobutamine echocardiography and resting-redistribution thallium-201 scintigraphy predicts recovery of hibernating myocardium after coronary revascularization. Am Heart J. 1994;128:864–869.PubMedCrossRefGoogle Scholar
  70. 70.
    Dilsizian V, Perrone-Filardi P, Arrighi JA, et al. Concordance and discordance between stress-redistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Circulation. 1993;88:941–952.PubMedCrossRefGoogle Scholar
  71. 71.
    Rocco TP, Dilsizian V, McKusick KA, Fischman AJ, Boucher CA, Strauss HW. Comparison of thallium redistribution with rest “reinjection” imaging for the detection of viable myocardium. Am J Cardiol. 1990;66:158–163.PubMedCrossRefGoogle Scholar
  72. 72.
    Galli M, Marcassa C, Imparato A, Campini R, Orrego PS, Giannuzzi P. Effects of nitroglycerin by technetium-99m sestamibi tomoscintigraphy on resting regional myocardial hypoperfusion in stable patients with healed myocardium infarction. Am J Cardiol. 1994;74:843–848.PubMedCrossRefGoogle Scholar
  73. 73.
    Berman DS, Kiat HS, Van Train KF, Germano G, Maddahi J, Friedman JD. Myocardial perfusion imaging with technetium-99m sestamibi: comparative analysis of available imaging protocols. J Nucl Med. 1994;35:681–688.PubMedGoogle Scholar
  74. 74.
    Taillefer R, Laflamme L, Durpas G, Picard M, Phaneuf DC, Leveille J. Myocardial perfusion imaging with Tc-99m methoxy-isobutyl-isonitrile (MIBI): comparison of short and long time intervals between rest and stress injections. Eur J Nucl Med. 1988;13:515–522.PubMedCrossRefGoogle Scholar
  75. 75.
    Helber U, Fenchel G, Müller-Schauenburg W, Hoffmeister HM. Effect of the redistribution time after reinjection on quantification of viable myocardium in multi-vessel coronary disease: comparison with post-revascularization defect size [abstract]. Circulation. 1994;90:1961.Google Scholar
  76. 76.
    Johnson LL. Myocardial perfusion imaging of a flow tracer: clinical experience with teboroxime. In: Zaret BL, Beller GA, eds. Nuclear Cardiology-State of the Art and Future Directions. St Louis, Mo: CV Mosby, 1993:209–215.Google Scholar
  77. 77.
    ACC/AHA Task Force. Guidelines for the early management of patients with acute myocardial infarction. J Am Coll Cardiol. 1996;28:1328–1428.CrossRefGoogle Scholar
  78. 78.
    Gibson RJ, Verani MS, Behrenbeck T, et al. Feasibility of tomographic Tc-99m hexakis-2-methoxy-2-methylpropyl-isonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation. 1989;80:1277–1286.CrossRefGoogle Scholar
  79. 79.
    Santoro GM, Bisi G, Sciaga R, Leoncini M, Fazzini PF, Mel-dolesi U. Single photon emission computed tomography with technetium-99m hexakis 2-methoxy isobutyl isonitrile in acute myocardial infarction before and after throm-bolytic treatment: assessment of salvaged myocardium and prediction of late functional recovery. J Am Coll Cardiol. 1990;15:301–314.PubMedCrossRefGoogle Scholar
  80. 80.
    Sinusas AJ, Trautmann KA, Bergin JD, et al. Quantification of area at risk during coronary occlusion and degree of myocardial salvage after reperfusion with technetium-99m methoxyisobutyl isonitrile. Circulation. 1990;82:1424–1437.PubMedCrossRefGoogle Scholar
  81. 81.
    Verani MS, Jeroudi MO, Mahmarian JJ, et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium-99m hexakis-2-methoxyisobutyl isonitrile. J Am Coll Cardiol. 1988;12:1573–1581.PubMedCrossRefGoogle Scholar
  82. 82.
    Wackers FJT, Gibbons RJ, Verani MS, et al. Serial quantitative planar technetium-99m isonitrile imaging in acute myocardial infarction: efficacy for noninvasive assessment of thrombolytic therapy. J Am Coll Cardiol. 1989;14:861–873.PubMedCrossRefGoogle Scholar
  83. 83.
    Burdine JA, DePuey G, Orzan F, Mathur VS, Hay RJ. Scintigraphic, electrocardiographic, and enzymatic diagnosis of perioperative myocardial infarction in patients undergoing myocardial revascularization. J Nucl Med. 1979;20:711–714.PubMedGoogle Scholar
  84. 84.
    Klausner SC, Botvinick EH, Shames D, et al. The application of radionuclide infarct scintigraphy to diagnose perioperative myocardial infarction following revascularization. Circulation. 1977;56:173–181.PubMedCrossRefGoogle Scholar
  85. 85.
    Righetti A, Crawford MH, O’Rourke RA, et al. Detection of perioperative myocardial damage after coronary artery bypass graft surgery. Circulation. 1977;55:173–178.PubMedCrossRefGoogle Scholar
  86. 86.
    Rude RE, Parkey RW, Bonte FJ, et al. Clinical implications of the technetium-99m stannous pyrophosphate myocardial scintigraphic “doughnut” pattern in patients with acute myocardial infarcts. Circulation. 1979;59:721–730.PubMedCrossRefGoogle Scholar
  87. 87.
    Coleman RE, Klein MS, Roberts R, Sobel BE. Improved detection of myocardial infarction with technetium-99m stannous pyrophosphate and serum MB creatine phosphokinase. Am J Cardiol. 1976;37:732–735.PubMedCrossRefGoogle Scholar
  88. 88.
    Corbett JR, Lewis M, Willerson JT, et al. 99m-Tc-pyrophosphate imaging in patients with acute myocardial infarction: comparison of planar imaging with single-photon tomography with and without blood pool overlay. Circulation. 1984;69:1120–1128.PubMedCrossRefGoogle Scholar
  89. 89.
    Massie BM, Botvinick EH, Werner JA, Chatterjee K, Parmley WW. Myocardial scintigraphy with technetium-99m stannous pyrophosphate: an insensitive test for nontransmural myocardial infarction. Am J Cardiol. 1979;43:186–192.PubMedCrossRefGoogle Scholar
  90. 90.
    Johnson LL, Seldin DW, Becker LC, et al. Antimyosin imaging in acute transmural myocardial infarction: results of a multicenter clinical trial. J Am Coll Cardiol. 1989;13:27–35.PubMedCrossRefGoogle Scholar
  91. 91.
    Ouzan J, Metz D, Jolly D, Liehn JC, Elaerts J. What factors determine indium-111 antimyosin monoclonal antibody uptake in patients with myocardial infarction. Int J Cardiol. 1993;40:257–263.PubMedCrossRefGoogle Scholar
  92. 92.
    Asano H, Sone T, Tsuboi H, et al. Diagnosis of right ventricular infarction by overlap images of simultaneous dual emission computed tomography using technetium-99m pyrophosphate and thallium-201. Am J Cardiol. 1993;71:902–908.PubMedCrossRefGoogle Scholar
  93. 93.
    Schofer J, Spielman RP, Brömel T, Bleifeld W, Mathey DG. Thallium-201/technetium-99m pyrophosphate overlap in patients with acute myocardial infarction after thrombolysis: prediction of depressed wall motion despite thallium uptake. Am Heart J. 1986;112:291–295.PubMedCrossRefGoogle Scholar
  94. 94.
    Johnson LL, Seldin DW, Keller AM, et al. Dual isotope thallium and indium antimyosin SPECT imaging to identify acute infarct patients at further ischemic risk. Circulation. 1990;81:37–45.PubMedCrossRefGoogle Scholar
  95. 95.
    Olson HG, Lyons KP, Aronow WS, Stinson PJ, Kuperus J, Waters HJ. The high-risk angina patient: identification by clinical features, hospital course, electrocardiography and technetium-99m stannous pyrophosphate scintigraphy. Circulation. 1981;64:674–684.PubMedCrossRefGoogle Scholar
  96. 96.
    Goldman L, Cook EF, Johnson PA, Brand DA, Ronan GW, Lee TH. Prediction of the need for intensive care in patients who come to emergency departments with acute chest pain. N Engl J Med. 1996;334:1498–1504.PubMedCrossRefGoogle Scholar
  97. 97.
    Hilton TC, Thompson RC, Williams HJ, et al. Technetium-989-sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol. 1994;23:1016–1022.PubMedCrossRefGoogle Scholar
  98. 98.
    Ohman EM, Armstrong PW, Christenson RH, et al. Cardiac troponin T levels for risk stratification in acute myocardial ischemia. N Engl J Med. 1996;335:1333–1341.PubMedCrossRefGoogle Scholar
  99. 99.
    Varetto T, Cantalupi D, Altiero A, Orlandi C. Emergency room technetium-99m-sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol. 1993;22:1804–1808.PubMedCrossRefGoogle Scholar
  100. 100.
    Hansen CI, Corbett JR, Pippin JJ, et al. Iodine-123-phenylpentadecanoic acid and single photon emission computed tomography in identifying left ventricular regional metabolic abnormalities in patients with coronary heart disease: Comparison with thallium-201 tomography. J Am Coll Cardiol. 1988;12:78–87.PubMedCrossRefGoogle Scholar
  101. 101.
    Kahn JK, Pippin JJ, Akers MS, Corbett JR. Estimation of jeopardized left ventricular myocardium in symptomatic and silent ischemia as determined by iodine-123 phenylpentadecanoic acid rotational tomography. Am J Cardiol. 1989;63:540–544.PubMedCrossRefGoogle Scholar
  102. 102.
    Kennedy PL, Corbett JR, Kulkarni PV, et al. Iodine-123 phenylpentadecanoic acid myocardial scintigraphy. Usefulness in the identification of myocardial ischemia. Circulation. 1986;74:1007–1015.PubMedCrossRefGoogle Scholar
  103. 103.
    Walamies M, Turjanmaa V, Koskinen M, Uusitalo A. Diagnostic value of I-123 phenylpentadecanoic acid (IPPA) metabolic and thallium-201 perfusion imaging in stable coronary artery disease. Eur Heart J. 1993;14:1079–1087.PubMedCrossRefGoogle Scholar
  104. 104.
    Van der Wall EE, Heidendal GA, den Hollander W, Westera G, Roos JP. I-123 labeled hexadecanoic acid in comparison with thallium-201 for myocardial imaging in coronary heart disease. Eur J Nucl Med. 1980;5:401–405.PubMedGoogle Scholar
  105. 105.
    Machulla HJ, Marsmann M, Dutschka K. I-131-(phenylpentadecanoic acid, a highly promising radioiodinated fatty acid for myocardial studies, I: development of synthesis and radiopharmaceutical quality. Radioactive Isotope in Klinik und Forschung. Vienna, Austria: H Engerman. 1980;14:363–368.Google Scholar
  106. 106.
    Machulla HJ, Marsmann M, Dutschka K. Biochemical concept and synthesis of radioiodinated phenyl fatty acid for in vivo metabolic studies of myocardium. Eur J Nucl Med. 1980;5:171.PubMedCrossRefGoogle Scholar
  107. 107.
    Machulla HJ, Marsmann M, Dutschka K. Radiopharmaceuticals: synthesis of radioiodinated phenyl fatty acids for studying myocardial metabolism. Journal of Radioanalytical Chemistry. 1980;56:253–261.CrossRefGoogle Scholar
  108. 108.
    Machulla HJ, Knust EJ, Vyska K. Radioiodinated fatty acids for cardiological diagnosis. International Journal of Radiation Applications and Instrumentation. 1986;37:777–788.CrossRefGoogle Scholar
  109. 109.
    Reske SN, Sauer W, Machulla HJ, Winkler C. 15(p-[I-123] iodophenyl) pentadecanoic acid as a tracer of lipid metabolism: comparison with [14-C] palmitic acid in murine tissues. J Nucl Med. 1984;25:1335–1342.PubMedGoogle Scholar
  110. 110.
    Vyska K, Machulla HJ, Stremmel W, et al. Regional myocardial free fatty acid extraction in normal and ischemic myocardium. Circulation. 1988;78:1218–1233.PubMedCrossRefGoogle Scholar
  111. 111.
    Dae MW, O’Connell JW, Botvinick EH, et al. Scintigraphic assessment of regional cardiac adrenergic innervation. Circulation. 1989;79:634–644.PubMedCrossRefGoogle Scholar
  112. 112.
    McGhie AI, Corbett JR, Akers MS, et al. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol. 1991;67:236–242.PubMedCrossRefGoogle Scholar
  113. 113.
    Stanton MS, Tuli MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in human detected noninvasively using I-123-metaiodobenzylguanidine. J Am Coll Cardiol. 1989;14:1519–1526.PubMedCrossRefGoogle Scholar
  114. 114.
    Glowniak JV, Turner FE, Gray LL, Palace RT, Lagunas-Solar MC, Woodward WR. Iodine-123 metaiodobenzyl-guanidine imaging of the heart in idiopathy congestive cardiomyopathy and cardiac transplants. J Nucl Med. 1989;30:1182–1191.PubMedGoogle Scholar
  115. 115.
    Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78:1192–1199.PubMedCrossRefGoogle Scholar
  116. 116.
    Schofer J, Spielman, R, Schuchert A, Weber K, Schlüter M. Iodine-123 metaiodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system distegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1988;12:1252–1258.PubMedCrossRefGoogle Scholar
  117. 117.
    Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH. Inverse relationship between cardiac accumulation of METAP [I-131] iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytomas. J Nucl Med. 1983;24:1127–1134.PubMedGoogle Scholar
  118. 118.
    Kreiner G, Wolzt M, Fasching P, et al. Myocardial I-123m iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Diabetes. 1995;44:543–549.PubMedCrossRefGoogle Scholar
  119. 119.
    Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol. 1993;22:1344–1353.PubMedCrossRefGoogle Scholar
  120. 120.
    Wichter T, Hindricks G, Lerch H, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy. Circulation. 1994;89:667–683.PubMedCrossRefGoogle Scholar
  121. 121.
    Ezekowitz MD, Leonard JC, Smith ED, Allen EW, Taylor FB. Identification of left ventricular thrombi in man using indium-111 labeled autologous platelets. Circulation. 1981;63:803–810.PubMedCrossRefGoogle Scholar
  122. 122.
    Ezekowitz MD, Wilson DA, Smith EO, et al. Comparison of indium-111 platelet scintigraphy and two-dimensional echocardiography in diagnosis of left ventricular thrombi. N Engl J Med. 1982;306:1509–1513.PubMedCrossRefGoogle Scholar
  123. 123.
    Ezekowitz MD, Burow RD, Heath PW, Streitz T, Smith EO, Parker DE. Diagnostic accuracy of indium-111 platelet scintigraphy in identifying left ventricular thrombi. Am J Cardiol. 1983;51:1712–1716.PubMedCrossRefGoogle Scholar
  124. 124.
    Ezekowitz MD, Smith EO, Rankin R, Harrison LH, Krous HF. Left atrial mass: diagnostic value of transesophgageal two-dimensional echocardiography and indium-111 platelet scintigraphy. Am J Cardiol. 1983;51:1563–1564.PubMedCrossRefGoogle Scholar
  125. 125.
    Ezekowitz MD, Kellerman DJ, Smith EO, Streitz TM. Detection of active left ventricular thrombosis during acute myocardial infarction using indium-111 platelet scintigraphy. Chest. 1984;86:35–39.PubMedCrossRefGoogle Scholar
  126. 126.
    Nishimura T, Misawa T, Park YD, Ühara T, Hayashida K, Hayasti M. Visualization of right atrial thrombus associated with constrictive pericarditis by indium-111 oxine platelet imaging. J Nucl Med. 1987;28:1344.PubMedGoogle Scholar
  127. 127.
    Stratton JR, Ritchie JL. In-111 platelet imaging of left ventricular thrombi: predictive value for systemic emboli. Circualtion. 1990;81:1182–1189.CrossRefGoogle Scholar
  128. 128.
    Vandenberg BF, Deabold JE, Conrad GR, et al. In-111 labeled platelet scintigraphy and two dimensional echocardiography for detection of left atrial appendage thrombi: studies in a new canine model. Circulation. 1988;78:1040–1046.PubMedCrossRefGoogle Scholar
  129. 129.
    Bergmann SR, Lerch RA, Mathias CJ, Sobel BE, Welch MJ. Noninvasive detection of coronary thrombi in In-111 platelets: concise communication. J Nucl Med. 1983;24:130–135.PubMedGoogle Scholar
  130. 130.
    Fox KAA, Bergmann SR, Mathias CJ, et al. Scintigraphic detection of coronary artery thrombi in patients with acute myocardial infarction. J Am Coll Cardiol. 1984;4:975–986.PubMedCrossRefGoogle Scholar
  131. 131.
    Pope CF, Ezekowitz MD, Smith EO, et al. Detection of platelet deposition at the site of peripheral balloon angioplasty using indium-111 platelet scintigraphy. Am J Cardiol. 1985;55:495–497.PubMedCrossRefGoogle Scholar
  132. 132.
    Riba AL, Thakur ML, Gottschalk A, Zaret BL. Imaging experimental coronary artery thrombosis with indium-111 platelets. Circulation. 1979;60:767–775.PubMedCrossRefGoogle Scholar
  133. 133.
    Bergmann SR, Lerch RA, Carlson EM, Saffitz JE, Sobel BE. Detection of cardiac transplant rejection with radiolabeled lymphocytes. Circulation. 1982;65:591–595.PubMedCrossRefGoogle Scholar
  134. 134.
    McKillop JH, Wallwork J, Reitz BA, et al. The use of In-111-labeled lymphocyte imaging to evaluate graft rejection following cardiac transplantation in dogs. Eur J Nucl Med. 1982;7:162–165.PubMedCrossRefGoogle Scholar
  135. 135.
    Lees AM, Lees RS, Schön FJ. Imaging human atherosclerosis with Tc-99m labeled low-density lipoprotein in human subjects. Arteriosclerosis. 1988;8:461–470.PubMedCrossRefGoogle Scholar
  136. 136.
    Rosen JM, Butler SP, Meinken GE, et al. Indium-111-labelled LDL: a potential agent for imaging atherosclerotic disease and lipoprotein disease and lipoprotein biodistribution. J Nucl Med. 1990;31:343–350.PubMedGoogle Scholar
  137. 137.
    Sinzinger H, Virgolini I. Nuclear medicine and atherosclerosis. Eur J Nucl Med. 1990;17:160–178.PubMedCrossRefGoogle Scholar
  138. 138.
    ACC/AHA Task Force Report. Guidelines for clinical use of cardiac radionuclide imaging. Circulation. 1995:91:1278–1303.Google Scholar
  139. 139.
    Dymond DS, Elliot A, Stone D, Hendrix G, Spurrell R. Factors that affect the reproducibility of measurments of left ventricular function from first-pass radionuclide ventriculograms. Circulation. 1982;65:311–322.PubMedCrossRefGoogle Scholar
  140. 140.
    Baillet G, Mena IG, Kuperus JH, Robertson JM, French WJ. Simultaneous technetium-99m MIBI angiography and myocardial perfusion imaging. J Nucl Med. 1989;30:38–44.PubMedGoogle Scholar
  141. 141.
    Iskandrian AS, Heo J, Kong HJ, Lyons E, Marsch S. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease and comparison with coronary arteriography and exercise thallium-201 SPECT imaging. Am J Cardiol. 1989;64:270–275.PubMedCrossRefGoogle Scholar
  142. 142.
    Cheng C, Trevis S, Samuel A, Treves S, Davis MA. A new osmium-191-iridium-191m generator. J Nucl Med. 1980;21:1169–1176.PubMedGoogle Scholar
  143. 143.
    Wackers FJ, Stein R, Pytlik L, et al. Gold-195m for serial first pass radionuclide angiocardiography during upright exercise in patients with coronary artery disease. J Am Coll Cardiol. 1983;2:497–505.PubMedCrossRefGoogle Scholar
  144. 144.
    Gelfand MJ, Hannon DW. Pediatric Nuclear Cardiology. In: Gerson MC, ed. Cardiac Nuclear Medicine. 1st ed. New York, NY: McGraw-Hill; 1987:43.7.Google Scholar
  145. 145.
    Imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol. 1996;3:G1–G46.Google Scholar
  146. 146.
    Hooper W, Horn M, Moser K, et al. Right ventricular size and function: the discrepancy between cardiac blood pool imaging techniques. Cathet Cardiovasc Diagn. 1982;8:597–606.PubMedCrossRefGoogle Scholar
  147. 147.
    Rezai K, Weiss R, Stanford W, Preslar J, Marcus M, Kirchner P. Relative accuracy of three scintigraphic methods for determination of right ventricular ejection fraction: a correlative study with ultrafast computed tomography. J Nucl Med. 1991;32:429–435.PubMedGoogle Scholar
  148. 148.
    Bodenheimer MM, Banka VS, Fooshee CM, Hermann GA, Heifant RH. Quantitative radionuclide angiography in the right anterior oblique view: comparison with contrast ventriculography. Am J Cardiol. 1978;41:718–723.PubMedCrossRefGoogle Scholar
  149. 149.
    Brady TJ, Thrall JH, Keyes GW, Brymer JF, Walton JA, Pitt B. Segmental wall-motion analysis in the right anterior oblique projection: comparison of exercise equilibrium radionuclide ventriculography and exercise contrast ventriculography. J Nucl Med. 1980;21:617–621.PubMedGoogle Scholar
  150. 150.
    Freeman MR, Berman DS, Staniloff HM, et al. Improved assessment of inferior segmental wall motion by the addition of a 70-degree left anterior oblique view in multiple gated equilibrium scintigraphy. Am Heart J. 1981;101:169–173.PubMedCrossRefGoogle Scholar
  151. 151.
    Hoffmeister HM, Hanke H, Unterberg R, Voelker W, Müller-Schauenburg W, Karsch KR. Ischämieerkennung mit Thallium-201-Single-Photon-Emissionscomputer-tomographie (SPECT) und Radionuklidventrikulographie im Vergleich zur Belastungscineventrikulographie. Z Kardiol. 1988;77:115–119.PubMedGoogle Scholar
  152. 152.
    Fearnow EC, Stanfield JA, Jaszczak RJ, Harris CC, Coleman RE. Factors affecting ventricular volume as determined by a count-based equilibrium method. J Nucl Med. 1985;26:1042–1047.PubMedGoogle Scholar
  153. 153.
    Links JM, Becker LC, Shindledecker JG, et al. Measurements of absolute left ventricular volume from gated blood pool studies. Circulation. 1982;65:82–91.PubMedCrossRefGoogle Scholar
  154. 154.
    Verani MS, Gaeta J, LeBlanc AD, et al. Validation of left ventricular volume measurements by radionuclide angiography. J Nucl Med. 1985;26:1394.PubMedGoogle Scholar
  155. 155.
    Duncan JS, Fetterman R, Greene R, et al. Quantification of left ventricular wall motion from multiple view equilibrium angiocardiography (ERNA). Automedica. 1988;10:1–3.Google Scholar
  156. 156.
    Wackers FJ, Terrin ML, Kayden DS, et al. Quantitative radionuclide assessment of regional ventricular function after thrombolytic therapy for acute myocardial infarction: results of phase I thrombolysis in myocardial infarction (TIMI) trial. J Am Coll Cardiol. 1989;13:998–1005.PubMedCrossRefGoogle Scholar
  157. 157.
    Zaret BL, Wackers FJ. Radionuclide methods for evaluating the results of thrombolytic therapy. Circulation. 1987;76(suppl II):8–17.Google Scholar
  158. 158.
    Adam WE, Tarkowska A. Evaluation of myocardial function using gated blood pool procedures. In: Pabst HW, Adam WE, Ell P, Gör G, Kriegel H, eds. Handbook of Nuclear Medicine. Stuttgart, Germany: Fischer; 1992.Google Scholar
  159. 159.
    Sigel H, Adam WE, Geffers H, Bitter F, Stauch M. Radionuklid-Ventrikulographie, III: klinische Ergebnisse: Parameter der regionalen Wandbewegung. Nuklear Medizin. 1978;17:216–220.Google Scholar
  160. 160.
    Brateman L, Buckley K, Keim SG, Wargovich TJ, Williams CM. Left ventricular regional wall motion assessment by radionuclide ventriculography: a comparison of cine display with fourier imaging. J Nucl Med. 1991;32:777–782.PubMedGoogle Scholar
  161. 161.
    Boonyaprapa S, Ekmahachai M, Thanachaikun N, Jaiprasert W, Sukthomya V, Poramatikul N. Measurement of left ventricular ejection fracton from gated technetium-99m sestamibi myocardial images. Eur J Nucl Med. 1994;22:528–531.CrossRefGoogle Scholar
  162. 162.
    Cerqueira MD, Harp GD, Richie JL. Quantitative gated blood pool tomographic assessment of regional ejection fraction: definition of normal limits. J Am Coll Cardiol. 1992;20:934–941.PubMedCrossRefGoogle Scholar
  163. 163.
    Faber TL, Stokely EM, Templeton GH, Akers MS, Parkey RW, Corbett JR. Quantification of three-dimensional left ventricular segmental wall motion and volumes from gated tomographic radionuclide ventriculograms. J Nucl Med. 1989;30:638–649.PubMedGoogle Scholar
  164. 164.
    Moore HL, Murphy PH, Burdine JA, et al. ECG-gated emission computed tomography of the cardiac blood pool. Radiology. 1980;134:233–235.PubMedGoogle Scholar
  165. 165.
    Borges-Neto S, Coleman RE, Jones RH. Perfusion and function at rest and treadmill exercise using technetium-99m stestamibi: comparison of one-and two-day protocols in normal volunteers. J Nucl Med. 1990;31:1128–1132.PubMedGoogle Scholar
  166. 166.
    Wagner HN, Wake R, Nickoloff E, Natarajan TK. The nuclear stethoscope: a simple device for generation of left ventricular volume curves. Am J Cardiol. 1976;38:747–750.PubMedCrossRefGoogle Scholar
  167. 167.
    Tamaki N, Yasuda T, Moore R, et al. Continuous monitoring of left ventricular function by an ambulatory radionuclide detector in patients with coronary artery disease. J Am Coll Cardiol. 1988;12:669–679.PubMedCrossRefGoogle Scholar
  168. 168.
    Hecht HS, Shaw RE, Bruce T, Myler RK. Silent ischemia: evaluation by exercise and redistribution tomographic thallium-201 myocardial imaging. J Am Coll Cardiol. 1989;14:895–900.PubMedCrossRefGoogle Scholar
  169. 169.
    Hecht HS, Shaw RE, Chin HL, Ryan C, Stertzer SH, Myler RK. Silent ischemia after coronary angioplasty: evaluation of restenosis and extent of ischemia in asymptomatic patients by tomographic thallium-201 exercise imaging and comparison with symptomatic patients. J Am Coll Cardiol. 1991;17:670–677.PubMedCrossRefGoogle Scholar
  170. 170.
    Mahmarian JJ, Pratt CM, Cocanougher MK, Verani MS. Altered myocardial perfusion in patients with angina pectoris or silent ischemia during exercise as assessed by quantitative thallium-201 single-photon emission computed tomography. Circulation. 1990;82:1305–1315.PubMedCrossRefGoogle Scholar
  171. 171.
    Abreu A, Mahmarian JJ, Nishimura S, Boyce TM, Verani MS. Tolerance and safety of pharmacologic coronary va-sodilation with adenosine in association with thallium-201 scintigraphy in patients with suspected coronary artery disease. J Am Coll Cardiol. 1991;18:730–735.PubMedCrossRefGoogle Scholar
  172. 172.
    Leppo JA. Thallium washout analysis: fact or fiction [editorial]? J Nucl Med. 1987;28:1058.PubMedGoogle Scholar
  173. 173.
    Mason JR, Palace RT, Freeman ML, et al. Thallium scintigraphy during dobutamine infusion: nonexercise-dependent screening test for coronary disease. Am Heart J. 1984;107:481–485.PubMedCrossRefGoogle Scholar
  174. 174.
    Pennell DJ, Underwood SR, Swanton RH, Walker JM, Ell PJ. Dobutamine thallium myocardial perfusion tomography. J Am Coll Cardiol. 1991;18:1471–1479.PubMedCrossRefGoogle Scholar
  175. 175.
    Kahn JK, McGhie I, Akers MS, et al. Quantitative rotational tomography with Tl-201 and Tc-99m 2-methoxy-isobutyl-isonitrile: a direct comparison in normal individuals and patients with coronary artery disease. Circulation. 1989;79:1282–1293.PubMedCrossRefGoogle Scholar
  176. 176.
    Kiat H, Berman DS, Maddahi J. Comparison of planar and tomographic exercise thallium-201 imaging methods for the evaluation of coronary artery disease. J Am Coll Cardiol. 1989;13:613–616.PubMedCrossRefGoogle Scholar
  177. 177.
    Maddahi J, Kiat H, Van Train KF, et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol. 1990;66:55E–62E.PubMedCrossRefGoogle Scholar
  178. 178.
    Maddahi J, Kiat H, Friedman JD, Berman DS, Van Train KK, Garcia EV. Technetium-99m-sestamibi myocardial perfusion imaging for evaluation of coronary artery disease. In: Zaret BL, Beller GA, eds. Nuclear Cardiology: State of the Art and Future Directions. St Louis, Mo: Mosby; 1993:191–200.Google Scholar
  179. 179.
    Verani MS. Thallium-201 and technetium-99m perfusion agents: where we are in 1992. In: Zaret BL, Beller GA, eds. Nuclear Cardiology: State of the Art and Future Directions. St Louis, Mo: Mosby; 1993:216–224.Google Scholar
  180. 180.
    Fintel DJ, Links JM, Brinker JA, Frank TL, Parker M, Becker LC. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: a receiver operating characteristic analysis. J Am Coll Cardiol. 1989;13:600–612.PubMedCrossRefGoogle Scholar
  181. 181.
    Mahmarian JJ, Boyce TM, Goldberg RK, Cocanouger MK, Roberts R, Verani MS. Quantitative exercise thallium-201 single-photon emission computed tomography for the enhanced diagnosis of ischemic heart disease. J Am Coll Cardiol. 1990;15:318–329.PubMedCrossRefGoogle Scholar
  182. 182.
    Mahmarian JJ, Verani MS. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease. Am J Cardiol. 1991;67:2D–11D.PubMedCrossRefGoogle Scholar
  183. 183.
    Massie BM, Botvinick EH, Brundage BH. Correlation of thallium-201 scintigrams with coronary anatomy. Factors affecting region by region sensitivity. Am J Cardiol. 1979;45:616–622.CrossRefGoogle Scholar
  184. 184.
    Rigo P, Bailey IK, Griffith LS, et al. Value and limitations of segmental analysis of stress thallium myocardial imaging for localization of coronary artery disease. Circulation. 1980;61:973–981.PubMedCrossRefGoogle Scholar
  185. 185.
    Detrano R, Janosi A, Lyons KP, Marcondes G, Abbassi N, Froelicher VF. Factors affecting sensitivity and specificity of a diagnostic test: the exercise thallium scintigram. Am J Med. 1988;84:699–710.PubMedCrossRefGoogle Scholar
  186. 186.
    Gibson RS, Beller GA. Should exercise electrocardio-graphic testing be replaced by radioisotope methods? In: Rahimtoola SH, Brest AN, eds. Controversies in Coronary Artery Disease. Philadelphia, Pa: FA Davis Co; 1981:1–31.Google Scholar
  187. 187.
    Okada RD, Boucher CA, Strauss HW, Pohost GM. Exercise radionuclide imaging approaches to coronary artery disease. Am J Cardiol. 1980;46:1188–1204.PubMedCrossRefGoogle Scholar
  188. 188.
    Verani MS, Marcus ML, Razzak MA, Ehrhardt JC. Sensitivity and specificity of thallium-201 perfusion scintigrams under exercise in the diagnosis of coronary artery disease. J Nucl Med. 1978;19:773–782.PubMedGoogle Scholar
  189. 189.
    Hoffmeister HM, Kaiser W, Hanke H, et al. Erkennung, Quantifizierung und Lokalisation von Myokardinfarkten: Vergleich der Thallium-Single-Photon-Emissions-Computertomographie mit biplaner Angiographie. Z Kardiol. 1985;74:625–632.PubMedGoogle Scholar
  190. 190.
    Hoffmeister HM, Hanke H, Unterberg R, Voelker W, Müller-Schauenburg W, Karsch KR. Quantification of myocardial ischemia and infarction with single photon emission computed tomography. Eur J Nucl Med. 1989;15:26–31.PubMedCrossRefGoogle Scholar
  191. 191.
    Kaul S, Boucher CA, Newell JB, et al. Determination of the quantitative thallium imaging variables that optimize detection of coronary artery disease. J Am Coll Cardiol. 1986;7:527–537.PubMedCrossRefGoogle Scholar
  192. 192.
    Kaul S, Chesler DA, Okada RD, Boucher CA. Computer versus visual analysis of exercise thallium-201 images: a critical appraisal in 325 patients with chest pain. Am Heart J. 1987;114:1129–1137.PubMedCrossRefGoogle Scholar
  193. 193.
    Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJC, Forrester J. Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation. 1981;64:924–935.PubMedCrossRefGoogle Scholar
  194. 194.
    Zaret BL, Wackers FJT, Soufer R. Nuclear cardiology. In: Braunwald E, ed. Heart Disease. Philadelphia, Pa: WB Saunders; 1992:276–311.Google Scholar
  195. 195.
    Iskandrian AS, Heo J, Lemlek J, Ogilby JD. Identification of high risk patients with left main and three-vessel coronary artery disease using stepwise discriminant analysis of clinical exercise and tomographic thallium data. Am Heart J. 1993;125:221–225.PubMedCrossRefGoogle Scholar
  196. 196.
    Maddahi J, Abdulla A, Garcia EV, Swan HJC, Berman DS. Noninvasive identification of left main and triple vessel coronary artery disease: improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201. J Am Coll Cardiol. 1986;7:53–60.PubMedCrossRefGoogle Scholar
  197. 197.
    Gerson MC, Thomas SR, Van Heertum RL. Tomographic myocardial perfusion imaging. In: Gerson MC, ed. Cardiac Nuclear Medicine. 2d ed. New York, NY: McGraw-Hill Inc; 1991:25–52.Google Scholar
  198. 198.
    Tamaki N, Yonekura Y, Mukai T, et al. Segmental analysis of stress thallium myocardial emission tomography for localization of coronary artery disease. Eur J Nucl Med. 1984;9:99–105.PubMedCrossRefGoogle Scholar
  199. 199.
    Tamaki N, Yonekura Y, Mukai T, et al. Stress thallium-201 transaxial emission computed tomography: quantitative versus qualitative analysis for evaluation of coronary artery disease. J Am Coll Cardiol. 1984;4:1213–1221.PubMedCrossRefGoogle Scholar
  200. 200.
    Chae SC, Heo J. Identification of extensive coronary artery disease in women by exercise single-photon emission computed tomographic (SPECT) thallium imaging. J Am Coll Cardiol. 1993;21:1305–1311.PubMedCrossRefGoogle Scholar
  201. 201.
    The Multicenter Post-Infarction Research Group. Risk stratification and survival after myocardial infarction. N Engl J Med. 1983;309:331–336.CrossRefGoogle Scholar
  202. 202.
    Esquivel L, Pollock SG, Beller GA, Gibson RS, Watson DD, Kaul S. Effect of the degree of effort on the sensitivity of the exercise thallium-201 stress test in symptomatic coronary artery disease. Am J Cardiol. 1989;63:160–165.PubMedCrossRefGoogle Scholar
  203. 203.
    O’Keefe JH Jr., Bateman TM, Silvestri R, Barnhart C. Safety and diagnostic accuracy of adenosine thallium-201 scintigraphy in patients unable to exercise and those with left bundle branch block. Am Heart J. 1992;124:614–621.PubMedCrossRefGoogle Scholar
  204. 204.
    Braat SH, Brugaeda P, Bar FW, Gorgels APM, Wellens HJJ. Thallium-201 exercise scintigraphy and left bundle branch block. Am J Cardiol. 1985;55:224–226.PubMedCrossRefGoogle Scholar
  205. 205.
    DePuey EG, Guertler-Krawcznska E, Robbins WL. Thallium-201 SPECT in coronary artery disease patients with left bundle branch block. J Nucl Med. 1988;29:1479–1485.PubMedGoogle Scholar
  206. 206.
    Hirzel HO, Senn M, Nuesch K, et al. Thallium-201 scintigraphy in complete left bundle branch block. Am J Cardiol. 1984;53:764–769.PubMedCrossRefGoogle Scholar
  207. 207.
    McGowan RL, Welch TG, Zaret BL, Bryson AL, Martin ND, Flamm MD. Noninvasive myocardial imaging with potassium-43 and rubidium-81 in patients with left bundle branch block. Am J Cardiol. 1976;38:422–428.PubMedCrossRefGoogle Scholar
  208. 208.
    Burns RJ, Galligan L, Wright LM, Lawand S, Burke RJ, Gladstone PJ. Improved specificity of myocardial thallium-201 single-photon emission computed tomography in patients with left bundle branch block by dipyridamole. Am J Cardiol. 1991;68:504–508.PubMedCrossRefGoogle Scholar
  209. 209.
    Jukema JW, Van der Wall EE, Van der VisMeesen MJ, Kruyswijk HH, Bruschke AVG. Dipyridamole thallium-201 scintigraphy for improved detection of left anterior descending coronary artery stenosis in patients with left bundle branch block. Eur Heart J. 1993;14:53–56.PubMedCrossRefGoogle Scholar
  210. 210.
    O’Keefe JH, Bateman TM, Barnhart CS. Adenosine thallium-201 is superior to exercise thallium-201 for detection coronary artery disease in patients with left bundle branch block. J Am Coll Cardiol. 1993;21:1332–1338.PubMedCrossRefGoogle Scholar
  211. 211.
    Rocett JF, Wood WC, Moinuddin M, Loveless V, Parrish B. Intravenous dipyridamole thallium-201 SPECT imaging in patients with left bundle branch block. Clin Nucl Med. 1990;15:401–407.CrossRefGoogle Scholar
  212. 212.
    Friedman TD, Greene AC, Iskandrian AS, Hakki AH, Kane SA, Segal BL. Exercise thallium-201 myocardial scintigraphy in women: correlation with coronary arteriography. Am J Cardiol. 1982;49:1632–1637.PubMedCrossRefGoogle Scholar
  213. 213.
    Johnstone DE, Wackers FJ, Berger HJ, et al. Effect of patients positioning of left lateral thallium-201 myocardial images. J Nucl Med. 1979;20:183–188.Google Scholar
  214. 214.
    Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: diagnostic accuracy of attenuation-corrected 99m Tc-sestamibi single photon emission computed tomography. Circulation. 1996;93:463–473.PubMedCrossRefGoogle Scholar
  215. 215.
    McLaughlin PR, Martin RP, Doherty P, et al. Reproducibility of thallium-201 myocardial imaging. Circulation. 1977;55:497–503.PubMedCrossRefGoogle Scholar
  216. 216.
    Iskandrian AS, Gerson M. Valvular heart disease. In: Gerson MC, ed. Cardiac Nuclear Medicine. 2d ed. New York, NY: McGraw-Hill; 1991.Google Scholar
  217. 217.
    Genda A, Mizuno S, Nunoda S, et al. Clinical studies on diabetic myocardial disease using exercise testing with myocardial scintigraphy and endomyocardial biopsy. Clin Cardiol. 1986;9:375–382.PubMedCrossRefGoogle Scholar
  218. 218.
    Hoffmeister HM, Riesner C, Miller-Schauenburg W, Karsch KR. Myocardial pattern of thallium-201 distribution in patients with dilated cardiomyopathy. American Journal of Noninvasive Cardiology. 1991;5:235–239.Google Scholar
  219. 219.
    Houghton JL, Frank MJ, Carr AA, Dohlen TW, Prisant M. Relations among impaired flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol. 1990;15:43–51.PubMedCrossRefGoogle Scholar
  220. 220.
    Maseri A, Parodi O, Severi S, Pesola A. Transient transmural reduction of myocardial blood flow, demonstrated by thallium-201 scintigraphy, as a cause of variant angina. Circulation. 1976;54:280–288.PubMedCrossRefGoogle Scholar
  221. 221.
    O’Gara PJ, Bonow RO, Maron BJ, et al. Myocardial perfusion abnormalities in patients with a hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation. 1987;76:1214–1223.PubMedCrossRefGoogle Scholar
  222. 222.
    Pitcher D, Wainright R, Maisey M, et al. Assessment of chest pain in hypertrophic cardiomyopathy using exercise thallium-201 myocardial scintigraphy. British Heart Journal. 44:650–656.Google Scholar
  223. 223.
    Ricci DR, Orlick AE, Doherty PW, Cipriano PR, Harrison DC. Reduction of coronary blood flow during coronary artery spasm occuring spontaneously and after provocation by ergonovine maleate. Circulation. 1978;57:392–395.PubMedCrossRefGoogle Scholar
  224. 224.
    Tubau JF, Szachcic J, Hollenberg M, Massie BM. Usefulness of thallium-201 scintigraphy in predicting the development of angina pectoris in hypertensive patients with left ventricular hypertrophy. Am J Cardiol. 1989;64:45–49.PubMedCrossRefGoogle Scholar
  225. 225.
    Hakki AH, Iskandrian AS. Effect of gender on left ventricular function during exercise in patients with coronary artery disease. Am Heart J. 1986;111:543–546.PubMedCrossRefGoogle Scholar
  226. 226.
    Hanley PC, Zinmeister AR, Clements IP, Bove AA, Brown ML, Gibbons RJ. Gender-related differences in cardiac response to supine exercise assessed by radionuclide angiography. J Am Coll Cardiol. 1989;13:624–629.PubMedCrossRefGoogle Scholar
  227. 227.
    Kuo L, Bolli R, Thornby J, Roberts R, Verani MS. Effects of exercise tolerance, age, and gender on the specificity of radionuclide angiography and sequential ejection fraction analyis during multistage exercise. Am Heart J. 1987;113:1180–1189.PubMedCrossRefGoogle Scholar
  228. 228.
    Port S, Cobb FR, Coleman RE, Jones RH. Effect of age on the response of the left ventricular ejection fraction to exercise. N Engl J Med. 1980;303:1133–1137.PubMedCrossRefGoogle Scholar
  229. 229.
    Diamond GA, Forrester JS. Analysis of probability as an aid to the clinical diagnosis of coronary artery disease. N Engl J Med. 1979;300:1350–1358.PubMedCrossRefGoogle Scholar
  230. 230.
    Epstein SE. Implications of probability analysis on the strategy used for noninvasive detection of coronary artery disease. Am J Cardiol. 1980;46:491–499.PubMedCrossRefGoogle Scholar
  231. 231.
    Patterson RE, Horrowitz SF, Eng C, et al. Can exercise electorcardiography and thallium-201 myocardial imaging exclude the diagnosis of coronary artery disease? Am J Cardiol. 1982;49:1127–1135.PubMedCrossRefGoogle Scholar
  232. 232.
    Patterson RE, Eng C, Horowitz SF. Pratical diagnosis of coronary artery disease: a Bayes’ theorem nomogram to correlate clinical data with noninvasive exercise test. Am J Cardiol. 1984;53:252–256.PubMedCrossRefGoogle Scholar
  233. 233.
    Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectivness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation. 1995;91:54–65.PubMedCrossRefGoogle Scholar
  234. 234.
    Weintraub WS, Madeira SW, Bodenheimer MM, et al. Critical analysis of the application of Bayes’ theorem to sequential testing in the noninvasive diagnosis of coronary artery disease. Am J Cardiol. 1984;54:43–49.PubMedCrossRefGoogle Scholar
  235. 235.
    Fleg JL, Girstenblith G, Zonderman AB, et al. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers. Circulation. 1990;81:428–436.PubMedCrossRefGoogle Scholar
  236. 236.
    Heo J, Thompson WO, Iskandrian AS. Prognostic implications of normal exercise thallium images. American Journal of Noninvasive Cardiology. 1987;1:209–212.Google Scholar
  237. 237.
    Pamelia FX, Gibson RS, Watson DD, Craddock GB, Sirowatka J, Beller GA. Prognosis with chest pain and normal thallium-201 exercise scintigrams. Am J Cardiol. 1983;55:920–926.CrossRefGoogle Scholar
  238. 238.
    Wackers FJT, Russo DJ, Russo D, Clements JP. Prognostic significance of normal quantitative planar thallium-201 stress scintigraphy in patients with chest pain. J Am Coll Cardiol. 1985;6:27–30.PubMedCrossRefGoogle Scholar
  239. 239.
    Wahl J, Hakki AH, Iskandrian AS. Prognostic implications of normal exercise thallium-201 images. Arch Intern Med. 1985;145:253–256.PubMedCrossRefGoogle Scholar
  240. 240.
    Blumenthal RS, Becker DM, Moy TF, Coresh J, Wilder LB, Becker LC. Exercise thallium tomographypredicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. Circulation. 1996;93:915–923.PubMedCrossRefGoogle Scholar
  241. 241.
    Califf RM, Armstrong PW, Carver JR, D’Agostino RB, Strauss WE. Task force stratification of patients into high, medium and low-risk subgroups for purpose of risk factor management. J Am Coll Cardiol. 1996;27:964–1047.CrossRefGoogle Scholar
  242. 242.
    Marie PY, Danchin N, Durand JF, et al. Long-term prediction of major ischemic events by exercise thallium-201 single photon emission computed tomography: Incremental prognostic value compared with clinical exercise testing, catheterization and radionuclide angiographic data. J Am Coll Cardiol. 1995;26:879–886.PubMedCrossRefGoogle Scholar
  243. 243.
    Mazzotta G, Pace L, Bonow RO. Risk stratification of patients with coronary artery disease and left ventricular dysfunction by exercise radionuclide angiography and exercise electrocardiography. J Nucl Cardiol. 1994;1:529–539.PubMedCrossRefGoogle Scholar
  244. 244.
    Nallamothu N, Ghods M, Heo J, Iskandrian AS. Comparison of thallium-201 single photon emission computed tomography and electrocardiographic response during exercise in patients with normal rest electrocardiographic results. J Am Coll Cardiol. 1995;25:830–836.PubMedCrossRefGoogle Scholar
  245. 245.
    Pancholy SB, Fattah AA, Kamal AA, et al. Independent and incremental prognostic value of exercise single-photon emission computed tomographic imaging in women. J Nucl Cardiol. 1995;2:110–116.PubMedGoogle Scholar
  246. 246.
    Marcus ML, Skorton DJ, Johnson MR, Collins SM, Harrison DG, Kerber RE. Visual estimates of percent diameter coronary stenosis: a battered gold standard. J Am Coll Cardiol. 1988;11:882–885.PubMedCrossRefGoogle Scholar
  247. 247.
    White CW, Wright CB, Doty DB, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310:819–824.PubMedCrossRefGoogle Scholar
  248. 248.
    Lakkis NM, Mahmarian JJ, Verani MS. Exercise thallium-201 single photon emission computed tomography for evaluation of coronary artery bypass graft patency. Am J Cardiol. 1995;76:107–111.PubMedCrossRefGoogle Scholar
  249. 249.
    Ritchie JL, Narahara KA, Trobaugh GB, Williams DL, Hamilton GW. Thallium-201 myocardial imaging before and after coronary revascularization: assessment of regional myocardial blood flow and graft patency. Circulation. 1977;56:830–836.PubMedCrossRefGoogle Scholar
  250. 250.
    Verani MS, Marcus ML, Spoto G, Rossi NP, Ehrhardt JC, Razzak MA. Thallium-201 myocardial perfusion scintigrams in the evaluation of aorto-coronary venous bypass surgery. J Nucl Med. 1978;19:765–772.PubMedGoogle Scholar
  251. 251.
    Hecht HS, Shaw RE, Bruce RT, Ryan C, Stertzer SH, Myler RK. Usefulness of tomographic thallium-201 imaging for detection of restenosis after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1990;66:1314–1318.PubMedCrossRefGoogle Scholar
  252. 252.
    Hirzel HO, Neusch K, Gruentzig AR, Luetolf UM. Short and long-term changes in myocardial perfusion after percutaneous transluminal coronary angioplasty assessed by thallium-201 exercise scintigraphy. Circulation. 1981;63:1001–1007.PubMedCrossRefGoogle Scholar
  253. 253.
    Hoffmeister HM, Kaiser W, Hanke H, Müller-Schauenburg W, Karsch KR, Seipel L. Myocardial perfusion and left ventricular function early after successful PTCA in 1-vessel coronary artery disease. Nuclear Medicine. 1994;33:68–72.Google Scholar
  254. 254.
    Miller DD, Verani MS. Current status of myocardial perfusion imaging after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1994;24:260.PubMedCrossRefGoogle Scholar
  255. 255.
    Verani MS, Tadros S, Raizner AE, et al. Quantitative analysis of thallium-201 uptake and washout before and after transluminal coronary angioplasty. Int J Cardiol. 1986;13:109–124.PubMedCrossRefGoogle Scholar
  256. 256.
    Avery PG, Hudson NM, Hubner PJB. Assessment of myocardial perfusion and function using gated methoxyisobutyl-isonitrile scintigraphy to detect restenosis after coronary angioplasty. Coron Artery Dis. 1993;4:1097–1102.PubMedCrossRefGoogle Scholar
  257. 257.
    Iskandrian AS. Single-photon emission computed tomographic thallium imaging with adenosine, dipyridamole, and exercise. Am Heart J. 1991;122:279–284.PubMedCrossRefGoogle Scholar
  258. 258.
    Kent KM, Bonow RO, Rosing DR, et al. Improved myocardial function during exercise after successful percutaneous transluminal coronary angioplasty. N Engl J Med. 1982;306:441–446.PubMedCrossRefGoogle Scholar
  259. 259.
    Braunwald EB, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:146–1149.Google Scholar
  260. 260.
    Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–221.PubMedCrossRefGoogle Scholar
  261. 261.
    Zimmermann R, Mall G, Rauch B, et al. Residual Tl-201 activity in irreversible defects as a marker of myocardial viability. Circulation. 1995;91:1016–1021.PubMedCrossRefGoogle Scholar
  262. 262.
    Cloninger KG, DePuey EG, Garcia EV, et al. Incomplete redistribution of delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol. 1988;12:955–963.PubMedCrossRefGoogle Scholar
  263. 263.
    Cuocolo A, Pace L, Maurea S, et al. Enhanced thallium-201 uptake after reinjection relation to regional ventricular function myocardial perfusion and coronary anatomy. J Nucl Biol Med. 1994;38:6–13.PubMedGoogle Scholar
  264. 264.
    Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988;12:1456–1463.PubMedCrossRefGoogle Scholar
  265. 265.
    Mahmarian JJ, Pratt CM, Boyce T, Verani MS. The variable extent of jeopardized myocardium in patients with single vessel coronary artery disease. Quantification of thallium-201 single-photon emission computed tomography. J Am Coll Cardiol. 1991;17:355–362.PubMedCrossRefGoogle Scholar
  266. 266.
    Rocco TP, Dilsizian V, Strauss HW, Boucher CA. Tech-netium-99m isonitrile myocardial uptake at rest. Its relation to clinical markers of potential viability. J Am Coll Cardiol. 1989;14:1678–1684.PubMedCrossRefGoogle Scholar
  267. 267.
    Sawada SG, Allman KC, Muzik O, et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol. 1994;23:92–98.PubMedCrossRefGoogle Scholar
  268. 268.
    Panza JA, Dilsizian V, Laurienzo JM, Curiel RV, Katsiyiannis PT. Relation between thallium uptake and contractile response to dobutamine. Circulation. 1995;91:990–998.PubMedCrossRefGoogle Scholar
  269. 269.
    Beller GA. Myocardial perfusion imaging with thallium-201. J Nucl Med. 1994;35:674–680.PubMedGoogle Scholar
  270. 270.
    Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. Circulation. 1991;83:363–381.PubMedCrossRefGoogle Scholar
  271. 271.
    Heller GV, Brown KA. Prognosis of acute and chronic coronary artery disease by myocardial perfusion imaging. Cardiol. Clin. 1994;12:271–287.Google Scholar
  272. 272.
    Koss JH, Kobren S, Grunwald AW, Bodenheimer MM. Role of exercise thallium-201 myocardial perfusion scintigraphy in predicting prognosis in suspected coronary artery disease. Am J Cardiol. 1987;59:531–534.PubMedCrossRefGoogle Scholar
  273. 273.
    Gibson RS, Watson DD, Craddock GB, et al. Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation. 1983;68:321–336.PubMedCrossRefGoogle Scholar
  274. 274.
    Machecourt J, Longeère P, Farget D, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect. J Am Coll Cardiol. 1994;23:1096–1106.PubMedCrossRefGoogle Scholar
  275. 275.
    Cerqueira MD, Maynard C, Ritchie JL, Davis KB, Kennedy JW. Long-term survival in 618 patients from the Western Washington streptokinase in myocardial infarction trials. J Am Coll Cardiol. 1992;20:1452–1459.PubMedCrossRefGoogle Scholar
  276. 276.
    Hakki AH, Bestico PF, Heo J, Unwala AA, Iskandrian AS. Relative prognostic value of rest thallium-201 imaging, radionuclide ventriculography and 24-hour ambulatory electrocardiographic monitoring after acute myocardial infarction. J Am Coll Cardiol. 1987;10:25–32.PubMedCrossRefGoogle Scholar
  277. 277.
    Braunwald EB, Mark DB, Jones RH, et al. Clinical Practice Guidelines: Unstable Angina: Diagnosis and Managment. Rockville, Md: US Dept of Health and Human Servies, Agency for Health Care Policy and Research; 1994. AHCPR publication 94-0602.Google Scholar
  278. 278.
    Gill JB, Ruddy TR, Newell JB, Finkelstein DM, Strauss HW, Boucher GA. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med. 1987;317:1486–1489.PubMedCrossRefGoogle Scholar
  279. 279.
    Iskandrian AS, Heo J, Nguyen T, Lyons E, Paugh E. Left ventricular dilatation and pulmonary thallium uptake after single-photon-emission computer tomography using thallium-201 during adenosine-induced coronary hyperemia. Am J Cardiol. 1990;66:807–811.PubMedCrossRefGoogle Scholar
  280. 280.
    Bonow RO, Kent KM, Rosing DR, et al. Exercise-induced ischemia in mildly symptomatic patients with coronary artery disease and preserved left ventricular function: identification of subgroups at risk of death during medical therapy. N Engl J Med. 1984;311:1339–1345.PubMedCrossRefGoogle Scholar
  281. 281.
    Christian TF, Behrenbeck T, Pellikka PA, Huber KC, Chesebro JH, Gibbons RJ. Mismatch of left ventricular function and infarct size demonstrated by technetium-99m isonitrile imaging after reperfusion therapy for acute myocardial infarction: identification of myocardial stunning and hyperkinesia. J Am Coll Cardiol. 1990;16:1632–1638.PubMedCrossRefGoogle Scholar
  282. 282.
    Corbett JR, Dehmer GJ, Lewis SE, et al. The prognostic value of submaximal exercise testing with radionuclide ventriculography before hospital discharge in patients with recent myocardial infarction. Circulation. 1981;64:535–544.PubMedCrossRefGoogle Scholar
  283. 283.
    Harris PJ, Harrell FEJr, Lee KL, Behar VS, Rosati RA. Survival in medically treated coronary artery disease. Circulation. 1979;60:1259–1269.PubMedCrossRefGoogle Scholar
  284. 284.
    Lee KL, Pryor DB, Pieper KS, et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease: a comparsion with clinical and catheterization variables. Circulation. 1990;82:1705–1717.PubMedCrossRefGoogle Scholar
  285. 285.
    Mock MB, Ringqvist I, Fisher LD, et al. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation. 1982;66:562–568.PubMedCrossRefGoogle Scholar
  286. 286.
    Simoons ML, Vos J, Tijssen JGP, et al. Long-term benefit of early thrombolytic therapy in patients with acute myocardial infarction: 5 year follow-up of a trial conducted by the Interuniversity Cardiology Institute of the Netherlands. J Am Coll Cardiol. 1989;14:1609–1615.PubMedCrossRefGoogle Scholar
  287. 287.
    Pryor DB, Harrell FE, Lee Kl, et al. Prognostic indicators from radionuclide angiography in medically treated patients with coronary artery disease. Am J Cardiol. 1984;53:18–22.PubMedCrossRefGoogle Scholar
  288. 288.
    Hendel RC, Layden JJ, Leppo JA. Prognostic value of dipyridamole thallium scintigraphy for evaluation of ischemic heart disease. J Am Coll Cardiol. 1990;15:109–116.PubMedCrossRefGoogle Scholar
  289. 289.
    Iskandrian AS, Heo J, Decoskey D, Askenase A, Segal BL. Use of exercise thallium-201 imaging for risk stratification of elderly patients with coronary disease. Am J Cardiol. 1988;61:269–272.PubMedCrossRefGoogle Scholar
  290. 290.
    Kaul S, Lilly DR, Gasho JA, et al. Prognostic utility of the exercise thallium-201 test in ambulatory patients with chest pain: comparison with cardiac catheterization. Circulation. 1988;77:745–758.PubMedCrossRefGoogle Scholar
  291. 291.
    Landenheim ML, Pollock BH, Rozanski A, et al. Extent and severity of myocardial hypoperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol. 1986;7:464–471.CrossRefGoogle Scholar
  292. 292.
    Staniloff HM, Forrester JS, Berman DS, Swan HJC. Prediction of death, myocardial infarction, and worsening chest pain using thallium scintigraphy and exercise electrocardiography. J Nucl Med. 1986;27:1842–1848.PubMedGoogle Scholar
  293. 293.
    Stratmann HG, Mark AL, Walter KE, Williams GA. Prognostic value of atrial pacing and thallium-201 scintigraphy in patients with stable chest pain. Am J Cardiol. 1989;64:900–985.CrossRefGoogle Scholar
  294. 294.
    Abraham RD, Freedman SB, Dunn RF, et al. Prediction of multivessel coronary artery disease and prognosis early after acute myocardial infarction by exercise electrocardiography and thallium-201 myocardial perfusion scanning. Am J Cardiol. 1986;58:423–427.PubMedCrossRefGoogle Scholar
  295. 295.
    Bairey CN, Rozanski A, Maddahi J, Resser KJ, Berman DS. Exercise thallium-201 scintigraphy and prognosis in typical angina pectorix and negative exercise electrocardiography. Am J Cardiol. 1989;64:282–287.PubMedCrossRefGoogle Scholar
  296. 296.
    Brown KA, Boucher CA, Okada RD, et al. Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol. 1983;1:994–1001.PubMedCrossRefGoogle Scholar
  297. 297.
    Heller LI, Tresgallo M, Sciacca RR, Blood DK, Seidin DW, Johnson LL. Prognostic significance of silent myocardial ischemia on a thallium stress test. Am J Cardiol. 1990;65:718–721.PubMedCrossRefGoogle Scholar
  298. 298.
    Leppo JA. Dipyridamole-thallium imaging: the lazy man’s stress test. J Nucl Med. 1989;30:281–287.PubMedGoogle Scholar
  299. 299.
    Christian TF, Miller TD, Bailey KR, Gibbons RJ. Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-201 imaging. Am J Cardiol. 1992;70:14–20.PubMedCrossRefGoogle Scholar
  300. 300.
    Nygaard TW, Gibson RS, Ryan JN, Gascho JA, Watson DD, Beller GA. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: comparison with patients with multiple-and single-vessel coronary artery disease. Am J Cardiol. 1984;53:462–469.PubMedCrossRefGoogle Scholar
  301. 301.
    Rehn T, Griffith LS, Achuff SC, et al. Exercise thallium-201 myocardial imaging in left main coronary artery disease: sensitive but not specific. Am J Cardiol. 1981;48:217–223.PubMedCrossRefGoogle Scholar
  302. 302.
    ACC/AHA Task Force. Guidelines for preoperative cardiovascular evaluation of noncardiac surgery. Circulation. 1996;93:1280–1317.Google Scholar
  303. 303.
    Mangano DT, Goldman L. Preoperative assessment of patients with known or suspected coronary disease. N Engl J Med. 1995;333:1750–1756.PubMedCrossRefGoogle Scholar
  304. 304.
    Lette J, Lapointe J, Waters D, Cerino M, Picard M, Gagnon A. Transient left ventricular cavitary dilation during dipyridamole-thallium imaging as an indicator of severe coronary artery disease. Am J Cardiol. 1990;66:1163–1170.PubMedCrossRefGoogle Scholar
  305. 305.
    Levinson JR, Boucher CA, Coley GM, Guiney TE, Strauss W, Eagle KA. Usefulness of semiquantitative analysis of dipyridamole-thallium-201 redistribution for improving risk stratification before vascular surgery. Am J Cardiol. 1990;66:406–410.PubMedCrossRefGoogle Scholar
  306. 306.
    Shaw L, Miller DD, Kong BA, et al. Determination of perioperative cardiac risk by adenosine thallium-201 myocardial imaging. Am Heart J. 1992;124:861–869.PubMedCrossRefGoogle Scholar
  307. 307.
    Wong T, Detsky AS. Preoperative cardiac risk assessment for patients having peripheral vascular surgery. Ann Intern Med. 1992;116:743–753.PubMedGoogle Scholar
  308. 308.
    Baron JF, Mundler O, Bertrand M, et al. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to assess cardiac risk before abdominal aortic surgery. N Engl J Med. 1994;330:663–669.PubMedCrossRefGoogle Scholar
  309. 309.
    Elliott BM, Robison JG, Zellner JL, Hendrix GH. Dobutamine Tl-201 imaging. Circulation. 1991;84(suppl III): III54–III60.PubMedGoogle Scholar
  310. 310.
    Zellner JL, Elliot BM, Robison JG, Hendrix GH, Spicer KM. Preoperative evaluation of cardiac risk using dobutamine-thallium imaging in vascular surgery. Ann Vasc Surg. 1990;4:238–243.PubMedCrossRefGoogle Scholar
  311. 311.
    Morris KG, Palmeri ST, Califf RM, et al. Value of radionuclide angiography in predicting specific cardiac events after acute myocardial infarction. Am J Cardiol. 1985;55:318–324.PubMedCrossRefGoogle Scholar
  312. 312.
    Bulkley BH, Hutchins GM, Bailey I, Strauss HW, Pitt B. Thallium-201 imaging and gated blood pool scans in patients with ischemic and idiopathic congestive cardiomy-opathy: a clinical and pathologic study. Circulation. 1977;55:753–760.PubMedCrossRefGoogle Scholar
  313. 313.
    Eichhorn EJ, Kosinski EJ, Lewis SM, Hill TC, Emond EH, Leland OS. Usefulness of dipyridamole-thallium-201 perfusion scanning for distinguishing ischemic from nonischemic cardiomyopathy. Am J Cardiol. 1988;62:945–951.PubMedCrossRefGoogle Scholar
  314. 314.
    Greenberg JM, Murphy JH, Okada RD, Pohost GM, Strauss WH, Boucher CA. Value and limitations of radionuclide angiography in determining the cause of reduced left ventricular ejection fraction: comparison of idiopathic dilated cardiomyopathy and coronary artery disease. Am J Cardiol. 1985;55:541–544.PubMedCrossRefGoogle Scholar
  315. 315.
    Dunn R, Uren R, Sadick N, et al. Comparison of thallium-201 scanning in idiopathic dilated cardiomyopathy and severe coronary artery disease. Circulation. 1982;66:804–810.PubMedCrossRefGoogle Scholar
  316. 316.
    Tauberg SG, Orie JE, Bartlett BE, Cottington EM, Flores AR. Usefulness of thallium-201 for distinction of ischemic from idopathic dilated cardiomyopathy. Am J Cardiol. 1993;71:674–680.PubMedCrossRefGoogle Scholar
  317. 317.
    Jullière Y, Mariet PY, Danchin N, et al. Radionuclide assessment of regional differences in left ventricular wall motion and myocardial perfusion in idiopathic dilated cardiomyopathy. Eur Heart J. 1993;14:1163–1169.CrossRefGoogle Scholar
  318. 318.
    Yamaguchi S, Tsuiki K, Hayasaka M, Yasui S. Segmental wall motion abnormalities in dilated cardiomyopathy: hemodynamic characteristics and comparison with thallium-201 myocardial scintigraphy. Am Heart J. 1987;113:1123–1128.PubMedCrossRefGoogle Scholar
  319. 319.
    Schwarz F, Mall G, Zebe H, et al. Quantitative morphological findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol. 1983;51:501–506.PubMedCrossRefGoogle Scholar
  320. 320.
    Suzuki Y, Kadota K, Nohara R, et al. Dilated cardiomyopathy: evaluation by thallium-201 emission computed tomography [abstract]. Circulation. 1983;68(suppl III).Google Scholar
  321. 321.
    Yoshinori LD, Chikamori T, Takata J, et al. Prognostic value of thallium-201 perfusion defects in idiopathic dilated cardiomyopathy. Am J Cardiol. 1991;67:188–193.CrossRefGoogle Scholar
  322. 322.
    Dec GW, Palacios I, Yasuda T, et al. Antimyosin antibody cardiac imaging: its role in the diagnosis of myocarditis. J Am Coll Cardiol. 1990;16:97–104.PubMedCrossRefGoogle Scholar
  323. 323.
    Alexander J, Dainiak N, Berger HJ, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med. 1979;300:278–283.PubMedCrossRefGoogle Scholar
  324. 324.
    Palmeri ST, Bonow RO, Myers CE, et al. Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. Am J Cardiol. 1986;58:607–613.PubMedCrossRefGoogle Scholar
  325. 325.
    Schwartz RG, McKenzie WB, Alexander J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med. 1987;82:1109–1118.PubMedCrossRefGoogle Scholar
  326. 326.
    Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia is a frequent cause of cardiac arrest and syncope in young patients with hypertrophie cardiomyopathy. J Am Coll Cardiol. 1993;22:796–804.PubMedCrossRefGoogle Scholar
  327. 327.
    Ohtsuki K, Sugihara H, Umamoto I, Nakamura T, Nakagawa T, Nakagawa M. Clinical evaluation of hypertrophie cardiomyopathy by myocardial scintigraphy using I-123 labelled 15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (I-123 BMIPP). Nucl Med Commun. 1994;15:441–447.PubMedCrossRefGoogle Scholar
  328. 328.
    Shimonagata T, Nishimura T, Uehara T, et al. Discrepancies between mypcardial perfusion and free fatty acid metabolism in patients with hypertrophie cardiomyopathy. Nucl Med Commun. 1993;14:1005–1013.PubMedCrossRefGoogle Scholar
  329. 329.
    Kinney EL, Jackson GL, Reeves WC, Zelis R, Beers E. Thallium-scan myocardial defects and echocardiographic abnormalities in patients with sarcoidosis without clinical cardiac dysfunction. Am J Med. 1980;68:497–503.PubMedCrossRefGoogle Scholar
  330. 330.
    Le Guludec D, Menad F, Faraggi M, Weinmann P, Battesti JP, Valeyre D. Myocardial sarcoidosis: clinical value of technetium-99 sestamibi tomoscintigraphy. Chest. 1994;106:1675–1682.CrossRefGoogle Scholar
  331. 331.
    Follansbee WP, Curtis EJ, Medsger TA Jr., et al. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma. N Engl J Med. 1984;310:142–148.PubMedCrossRefGoogle Scholar
  332. 332.
    Forman MB, Sandier MP, Sacks GA, Kronenberg MW, Powers TA. Radionuclide imaging in myocardial sarcoidosis: demonstration of myocardial uptake of technetium pyrophosphate-99m and gallium. Chest. 1983;83:570–580.CrossRefGoogle Scholar
  333. 333.
    Fournier C, Grimon G, Rinaldi JP, et al. Usefulness of technetium-99m pyrophosphate myocardial scintigraphy in amyloid polyneuropathy and correlation with echocar-diography. Am J Cardiol. 1993;72:854–857.PubMedCrossRefGoogle Scholar
  334. 334.
    Tawarahara K, Kurata C, Okayama K, Kobayashi A, Yamazaki N. Thallium-201 and gallium-67 single photon emission computed tomographic imaging in cardiac sarcoidosis. Am Heart J. 1992;124:1383–1384.PubMedCrossRefGoogle Scholar
  335. 335.
    Borer JS, Bacharach SL, Green MV, et al. Exercise-induced left ventricular dysfunction in symptomatic and asymptomatic patients with aortic regurgitation: assessment by radionuclide cineangiography. Am J Cardiol. 1978;42:351–356.PubMedCrossRefGoogle Scholar
  336. 336.
    Bailey IK, Come PC, Kelly DT, et al. Thallium-201 perfusion imaging in aortic valve stenosis. Am J Cardiol. 1977;40:889–899.PubMedCrossRefGoogle Scholar
  337. 337.
    Dunn RF, Wolff L, Wagner S, Botvinick EH. The inconsistent pattern of thallium defects: a clue to false positive perfusion scintigram. Am J Cardiol. 1981;48:224–232.PubMedCrossRefGoogle Scholar
  338. 338.
    Pfisterer M, Müller-Brand J, Brundler H, Cueni T. Prevalence and significance of reversible radionuclide ischemic perfusion defects in symptomatic aortic valve disease patients with and without concomitant coronary disease. Am Heart J. 1982;103:92–96.PubMedCrossRefGoogle Scholar
  339. 339.
    Nies R, Hanke H, Helber U, Müller-Schauenburg W, Hoffmeister HM. Untersuchungen zur Perfusion des linksventrikulären Myokards bei Patienten mit Aorten-klappenvitien mittels Single-Photon-Emisssions-Computertomographie. Z Kardiol. 1994;83:864–869.PubMedGoogle Scholar
  340. 340.
    Samuels B, Kiat H, Friedman JD, Berman DS. Adenosine pharmacologic stress myocardial perfusion tomographic imaging in patients with significant aortic stenosis. J Am Coll Cardiol. 1995;25:99–106.PubMedCrossRefGoogle Scholar
  341. 341.
    Kettunen R, Huikuri HV, Heikkilä J, Takkunen JT. Preoperative diagnosis of coronary artery disease in patients with valvular heart disease using technetium-99m isonitrile tomographic imaging together with high dose dipyridamole and handgrip exercise. Am J Cardiol. 1992;69:1442–1445.PubMedCrossRefGoogle Scholar
  342. 342.
    Fouad FM, Slomindki JM, Tarazi RC. Left ventricular diastolic function in hypertension: relation to left ventricular mass and function. J Am Coll Cardiol. 1984;3:1500–1506.PubMedCrossRefGoogle Scholar
  343. 343.
    Iskandrian AS, Hakki A. Age-related changes in left ventricular diastolic performance. Am Heart J. 1986;112:75–78.PubMedCrossRefGoogle Scholar
  344. 344.
    Bonow RO, Kent KM, Rosing DR, et al. Improved left ventricular diastolic filling in patients with coronary artery disease after percutaneous transluminal coronary angioplasty. Circulation. 1982;66:1159–1163.PubMedCrossRefGoogle Scholar
  345. 345.
    Carrio I, Berna L, Ballester M, et al. Indium-111 antimyosin scintigraphy to assess myocardial damage in patients with suspected myocarditis and cardiac rejection. J Nucl Med. 1988;29:1893–1900.PubMedGoogle Scholar
  346. 346.
    Frist W, Yasuda T, Segall G, et al. Noninvasive detection of human cardiac transplant reinjection with indium-111 an-timyosin (Fab) imaging. Circulation. 1987;76(suppl V): V81–V85.PubMedGoogle Scholar
  347. 347.
    Ballester M, Obrador D, Carrio I, et al. Indium-111-monoclonal antimyosin antibody studies after the first year of heart transplantation: identification of risk groups for developing rejection during long-term follow-up and clinical implications. Circulation. 1990;82:2100–2108.PubMedCrossRefGoogle Scholar
  348. 348.
    De Nardo D, Scibilia G, Macchiarelli AG, et al. The role of indium-111 antimyosin (Fab) imaging as a noninvasive surveillance method of human heart transplant rejection. Journal of Heart Transplantation. 1989;8:407–412.PubMedGoogle Scholar
  349. 349.
    Addonizio LJ. Detection of cardiac allograft rejection using radionuclide techniques. Prog Cardiovasc Dis. 1990;33:73–83.PubMedCrossRefGoogle Scholar
  350. 350.
    Meneguetti JC, Camargo EE, Soares J, et al. Gallium-67 imaging in human heart transplantation: correlation with endomyocardial biopsy. Journal of Heart Transplantation. 1987;6:171–176.PubMedGoogle Scholar
  351. 351.
    Berry JJ, Pieper S, Hanson MW, Hoffmean JM, Coleman RE. The effect of metabolic milieu on cardiac PET imaging with fluorine-18 doxyglucose and nitrogen-13 ammonia in normal volunteers. J Nucl Med. 1991;32:1518–1525.PubMedGoogle Scholar
  352. 352.
    Camici P, Araujo LI, Spinks T, et al. Increased uptake of F-18 fluorodeoxyglucose in post-ischemic myocardium of patients with exercise-induced angina. Circulation. 1986;74:81–88.PubMedCrossRefGoogle Scholar
  353. 353.
    Czernin J, Porenta G, Brunken R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation. 1990;88:884–895.CrossRefGoogle Scholar
  354. 354.
    Gropler RJ, Siegal BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of F-18 fluorodeoxyglucose in normal fasted humans. J Nucl Med. 1990;31:1749–1756.PubMedGoogle Scholar
  355. 355.
    Marshall RC, Tillisch JH, Phelps ME, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, F-18 labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1981;64:766–778.Google Scholar
  356. 356.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of F-18 fluorodeoxyglucose and Tl-201 in patients with chronic coronary artery disease and left ventircular dysfunction. Circulation. 1992;86:125–1137.CrossRefGoogle Scholar
  357. 357.
    Tamaki N, Yonekura Y, Yamashita K, et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989;64:860–865.PubMedCrossRefGoogle Scholar
  358. 358.
    Van der Wall EE, Blanksma PK, Niemeyer MG, Paans AMJ. Cardiac Positron Emission Tomography: Viability, Perfusion, Receptors and Cardiomyopathy. Dordrecht, Germany: Kluwer Academic Publisher; 1995.CrossRefGoogle Scholar
  359. 359.
    Schelbert HR, Henze E, Keen R, et al. C-ll palmitate acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron computed tomography, IV: in vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J. 1983;106:736–750.PubMedCrossRefGoogle Scholar
  360. 360.
    Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C] acetate as a tracer for noninvasive assessment of oxidative metabolism with positren emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation. 1990;81:1594–1605.PubMedCrossRefGoogle Scholar
  361. 361.
    Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schel-bert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res. 1988;63:628–634.PubMedCrossRefGoogle Scholar
  362. 362.
    Walsh MN, Geltman EM, Brown MA, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-111 acetate in patients with myocardial infarction. J Nucl Med. 1989;30:1798–1808.PubMedGoogle Scholar
  363. 363.
    Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using N-13 ammonia and reoriented dynamic positron emission tomographic imaging. Circulation. 1992;86:1004–1017.PubMedCrossRefGoogle Scholar
  364. 364.
    Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with H2-15O and dynamic positron emission tomography: strategy for quantification in relation to the partial-volume effect. Circualtion. 1989;78:104–115.CrossRefGoogle Scholar
  365. 365.
    Bergmann SR, Hack S, Tweson T, Welch MJ, Sobel BE. The dependence of accumulation of NH3-13 by myocardium on metabolic factors and its implications for the quantitative assessment of perfusion. Circulation. 1980;61:34–43.PubMedCrossRefGoogle Scholar
  366. 366.
    Stewart RE, Popma J, Gacioch GM, et al. Comparison of thallium-201 SPECT redistribution patterns and rubidium-82 PET rest-stress myocardial blood flow imaging. International Journal of Cardiac Imaging. 1994;10:15–23.PubMedCrossRefGoogle Scholar
  367. 367.
    Schelbert HR, Bonow RO, Geltman EN, et al. Clinical use of cardiac positron emission tomography: Positron statement of the Cardiovascular Council of the Society of Nuclear Medicine. J Nucl Med. 1993;34:1385–1388.Google Scholar
  368. 368.
    Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative arteriography in 193 patients. Circulation. 1989;79:825–835.PubMedCrossRefGoogle Scholar
  369. 369.
    Go RT, Marwick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med. 1990;31:1899–1905.PubMedGoogle Scholar
  370. 370.
    Grover-McKay M, Ratib O, Schwaiger M. Detection of coronary artery disease with positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1992;67:1303–1310.Google Scholar
  371. 371.
    Tamaki N, Yonekura Y, Yamashita K, et al. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Am J Cardiol. 1988;62:202–208.PubMedCrossRefGoogle Scholar
  372. 372.
    Beanlands RS, Muzik O, Melon P, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. J Am Coll Cardiol. 1995;26:1465–1475.PubMedCrossRefGoogle Scholar
  373. 373.
    DeSilva R, Camici PG. Role of positron emission tomography in the investigation of human coronary circulation. Cardiovasc Res. 1994;28:1595–1612.CrossRefGoogle Scholar
  374. 374.
    Di Carli MF, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery diease and left ventricular dysfunction. Am J Cardiol. 1994;73:527–533.CrossRefGoogle Scholar
  375. 375.
    Di Carli M, Czernin J, Hoh CK, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91:1944–1951.CrossRefGoogle Scholar
  376. 376.
    Goldstein RA, Haynie M. Limited myocardial perfusion reserve in patients with left ventricular hypertrophy. J Nucl Med. 1990;31:255–258.PubMedGoogle Scholar
  377. 377.
    Geltman E, Henes C, Senneff M, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol. 1990;16:586–595.PubMedCrossRefGoogle Scholar
  378. 378.
    Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial flow and the severity of coronary artery stenosis. N Engl J Med. 1994;330:1782–1788.PubMedCrossRefGoogle Scholar
  379. 379.
    Czernin J, Sun K, Brunken R, Böttcher M, Phelps M, Schelbert H. Effect of acute and long-term smoking on myocardial blood flow and flow reserve. Circulation. 1995;91:2891–2997.PubMedCrossRefGoogle Scholar
  380. 380.
    Czernin J, Barnard RJ, Sun KT, et al. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Circulation. 1995;92:197–204.PubMedCrossRefGoogle Scholar
  381. 381.
    Gould KL, Martucci JP, Goldberger DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease: a potential noninvasive marker of healing coronary endothelium. Ciculation. 1994;89:1530–1538.CrossRefGoogle Scholar
  382. 382.
    Gould KL, Ornish D, Scherwitz L, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term intense risk factor modification. JAMA. 1995;274:894–901.PubMedCrossRefGoogle Scholar
  383. 383.
    Superko HR, Drauss RM. Coronary artery disease regression: convincing evidence for the benefit of aggressive lipoprotein management. Circulation. 1994;90:1056–1069.PubMedCrossRefGoogle Scholar
  384. 384.
    Hariharan R, Bray M, Ganim R, Doenst T, Goodwin GW, Taegtmeyer H. Fundamental limitations of F-18 2-dioxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation. 1995;91:2435–2444.PubMedCrossRefGoogle Scholar
  385. 385.
    Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med. 1992;33:1255–1262.PubMedGoogle Scholar
  386. 386.
    Locher JT, Frey LD, Seybold K, Jenzer H. Myocardial F18-FDG-PET: experiences with euglycemic hyperinsulinemic clamp technique. Angiology. 1995;46:313–320.PubMedCrossRefGoogle Scholar
  387. 387.
    Tamaki N, Yonekura Y, Konishi J. Myocardial FDG studies with the fasting oral glucose-loading or insulin clamp methods [editorial]. J Nucl Med. 1992;33:1263–1268.PubMedGoogle Scholar
  388. 388.
    Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314:884–888.PubMedCrossRefGoogle Scholar
  389. 389.
    Eitzman D, Al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992;20:559–565.PubMedCrossRefGoogle Scholar
  390. 390.
    Nienaber GA, Brunken RC, Sherman CT, et al. Metabolic and functional recovery of ischemic human myocardium after coronary angioplasty. J Am Coll Cardiol. 1991;18:966–978.PubMedCrossRefGoogle Scholar
  391. 391.
    Tamaki N, Ohtani H, Yamashita K, et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomograpy using fluorine-18-deoxyglucose. J Nucl Med. 1991;32:673–678.PubMedGoogle Scholar
  392. 392.
    Bax JJ, Visser FC, van Lingen A, et al. Feasibility of assessing regional myocardial uptake of F-18 fluorodeoxyglu-cose using single photon emission computed tomography. Eur Heart J. 1993;14:1675–1682.PubMedCrossRefGoogle Scholar
  393. 393.
    Bax JJ, Visser FC, van Lingen A, et al. Relation between myocardial uptake of thallium-201 chloride and F-18 fluorodeoxyglucose imaged with SPECT in normal volunteers. Eur J Nucl Med. 1995;22:56–60.PubMedCrossRefGoogle Scholar
  394. 394.
    Huitnik JM, Visser FC, van Lingen A, et al. Feasibility of planar fluorine-18-FDG imaging after recent myocardial infarction to assess myocardial viability. J Nucl Med. 1995;36:975–981.Google Scholar
  395. 395.
    Maddahi J, Schelber H, Brunken R, DiCarli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med. 1994;35:707–715.PubMedGoogle Scholar
  396. 396.
    Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C] acetate and dynamic positron tomography. Circulation. 1989;80:863–872.PubMedCrossRefGoogle Scholar
  397. 397.
    Gropler RJ, Geltman EM, Sampathkumaran K, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol. 1992;20:569–577.PubMedCrossRefGoogle Scholar
  398. 398.
    Caldwell JH, Revenaugh JR, Martin GV, Johnson PM, Rasey JS, Krohn KA. Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole u take during low-flow ischemia. J Nucl Med. 1995;36:1633–1638.PubMedGoogle Scholar
  399. 399.
    Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation. 1993;87:1616–1621.PubMedCrossRefGoogle Scholar
  400. 400.
    Delforge J, Syrota A, Lancon JL, et al. Cardiac fl-adrenergic receptor density measured in vivo using PET, CGP12177, and a new graphical method. J Nucl Med. 1991;32:739–748.PubMedGoogle Scholar
  401. 401.
    Syrota A. Positron emission tomography: evaluation of cardiac receptors. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, eds. Cardiac Imaging: A Companion to Braunwald’s Heart Disease. Philadelphia, Pa: WB Saunders Company; 1991:1256–1270.Google Scholar
  402. 402.
    Ziegler SI, Frey AW, Überfuhr P, et al. Assessment of myocardial reinnervation in cardiac transplants by positron emission tomography: functional significance tested by heart rate variability. Clin Sci (Colch). 1996;91:126–128.Google Scholar
  403. 403.
    Hoffineister HM, Müller-Schauenburg W, Helber U, Feine U, Seipel L. EKG-getriggerte FDG-Positron-Emissions-Computertomographie zur Identifikation von vitalem Myokard [abstract]. Z Kardiol. 1995;84(suppl 1):3.Google Scholar
  404. 404.
    Hoffmeister HM, Müller-Schauenburg W, Helber U, Machulla HJ, Feine U, Bares R. LV segmental metabolism and function in multi-vessel coronary heart disease detected with ECG-gated PET and dobutamine stress [abstract]. Circulation. 1997;96(suppl 1):68.Google Scholar
  405. 405.
    Müller-Schauenburg W, Hoffmeister HM, Helber U, Litzenmayer U, Feine U. Gated cardiac FDG PET improved by Fourier analysis in comparison with cine ventriculography [abstract]. J Nucl Med. 1995;36:141.Google Scholar
  406. 406.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994;23:608–616.PubMedCrossRefGoogle Scholar
  407. 407.
    Soufer R, Dey HM, Ng CK, Zaret BL. Comparison of sestamibi single-photon emission computed tomography with positron emission tomography for estimating left ventricular myocardial viability. Am J Cardiol. 1995;75:1214–1219.PubMedCrossRefGoogle Scholar
  408. 408.
    Tamaki N, Kawamoto M, Tadamura E, et al. Prediction of reversible ischemia after revascularization. Circulation. 1995;91:1697–1705.PubMedCrossRefGoogle Scholar
  409. 409.
    vom Dahl J, Muzik O, Wolfe E, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation. 1996;93:238–245.CrossRefGoogle Scholar
  410. 410.
    Brunken RC, Kottou S, Nienaber CA, et al. PET detection of viable tissue in myocardial segments with persistent defects at Tl-201 SPECT. Radiology. 1989;65:65–73.Google Scholar
  411. 411.
    Haas F, Hähnel C, Sebening F, Meisner H, Schwaiger M. Effect of preoperative PET viability on peri-and postoperative risk [abstract]. J Am Coll Cardiol. 1996;27:300A.CrossRefGoogle Scholar
  412. 412.
    Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME, Schelbert HR. Positron emission tomography detects metabolic viability in myocardium with persistent 24 hours single-photon emission computed tomography Tl-201 defects. Circulation. 1992;86:1357–1369.PubMedCrossRefGoogle Scholar
  413. 413.
    Flameng W, Suy R, Schwarz F, et al. Ultrastructural correlates of left ventricular contraction abnormalities in patients with chronic ischemic heart disease: determinants of reversible segmental asynergy. Am Heart J. 1981;102:846–857.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Hans Martin Hoffmeister

There are no affiliations available

Personalised recommendations