R. Adams, Sobolev Sapces, Academic Press New York, 1975.
Google Scholar
C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potential in three-dimensional nonsmooth domains,Tech. Rep. 96–04, IRMAR, Rennes, France, 1996.
Google Scholar
D. Arnold, R. Falk, and R. Winther, Preconditioning in H(div) and applications, Math. Comp., 66 (1997), pp. 957–984.
MathSciNet
MATH
CrossRef
Google Scholar
—, Multigrid preconditioning in H(div) on non-convex polygons, tech. rep., Penn State University, 1997, submitted to Computational and Applied Mathematics.
Google Scholar
R. Bank, T. Dupont, and H. Yserentant, The hierarchical basis multigrid method, Numer. Math., 52 (1988), pp. 427–458.
MathSciNet
MATH
CrossRef
Google Scholar
J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378.
MathSciNet
MATH
CrossRef
Google Scholar
F. Bornemann, A
sharpened condition number estimate for the BPX-precondtioner of elliptic finite element problems on highly nonuniform triangulations, Tech. Rep. SC 91–9, ZIB-Berlin, 1991.
Google Scholar
A. Bossavit, Two dual formulations of the 3D eddy-currents problem, COMPEL, 4 (1985), pp. 103–116.
MathSciNet
CrossRef
Google Scholar
—, A rationale for edge elements in 3d field computations, IEEE Trans. Mag., 24 (1988), pp. 74–79.
Google Scholar
—,Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Proc. A, 135 (1988), pp. 493–500.
Google Scholar
—, A new viewpoint on mixed elements, Meccanica, 27 (1992), pp. 3–11.
Google Scholar
J. Bramble, Multigrid methods, Pitman Research Notes in Mathematics Series, Longman, London, 1993.
Google Scholar
J. Bramble, J. Pasciak, and A. Schatz, The construction of preconditioners by substructuring I, Math. Comp., 47 (1986), pp. 100–134.
MathSciNet
CrossRef
Google Scholar
—,The construction of preconditioners for elliptic problems by substructuring. IV, Math. Comput., 53 (1989), pp. 1–24.
Google Scholar
J. Bramble, J. Pasciak, and J. Xu, Parallel multilevel preconditioners, Math. Comp., 55 (1990), pp. 1–22.
MathSciNet
MATH
CrossRef
Google Scholar
J. Bramble and J. Xu, Some estimates for a weighted L2-projection, Math. Comp., 56 (1991), pp. 463–476.
MathSciNet
MATH
Google Scholar
J. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68 (1994), pp. 311–324.
MathSciNet
MATH
CrossRef
Google Scholar
F. Brezzi, J. Douglas, and D. Marini, Two families of mixed finite elements for 2nd order elliptic problems, Numer. Math., 47 (1985), pp. 217–235.
MathSciNet
MATH
CrossRef
Google Scholar
F. Brezzi and M. Fortin, Mixed and hybrid finite element methods,Springer-Verlag, New York, 1991.
MATH
CrossRef
Google Scholar
Z. Cai, C. Goldstein, and J. Pasciak, Multilevel iteration for mixed finite element systems with penalty, SIAM J. Sci. Comput., 14 (1993), pp. 1072–1088.
MathSciNet
MATH
CrossRef
Google Scholar
Z. Cai, R. Lazarov, T. Manteuffel, and S. Mccormick, First-order system least-squares for partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp. 1785–1799.
MathSciNet
MATH
CrossRef
Google Scholar
Z. Cai, R. Parashkevov, T. Russel, and X. Ye, Domain decomposition for a mixed finite element method in three dimensions, Technical Report CCM-078, University of Colorado, Denver, Center for Computational Mathematics.
Google Scholar
P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
MATH
Google Scholar
R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Springer-Verlag, New York, 1988.
CrossRef
Google Scholar
J. Douglas and J. Roberts, Global estimates for mixed methods for 2nd order elliptic equations, Math. Comp., 44 (1985), pp. 39–52.
MathSciNet
MATH
CrossRef
Google Scholar
M. Dryja, B.F. Smith, and O.B. Widlund, Schwarz analysis of iterative sub-structuring algorithms for elliptic problems in three dimensions, SIAM J. Nu-mer. Anal., 31 (1994), pp. 1662–1694.
MathSciNet
MATH
CrossRef
Google Scholar
M. Dryja and O.B. Widlund, Domain decomposition algorithms with small overlap, SIAM J. Sci. Comput., 15 (1994), pp. 604–620.
MathSciNet
MATH
CrossRef
Google Scholar
R. Ewing and J. Wang, Analysis of the Schwarz algorithm for mixed finite element methods, M
2
AN Math. Modelling and Numer. Anal., 26 (1992), pp. 739–756.
MathSciNet
MATH
Google Scholar
V. Girault, Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R3, Math. Comp., 51 (1988), pp. 55–74.
Google Scholar
—,Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in
R
3, vol. 1431 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1989, pp. 201–218.
Google Scholar
V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin, 1986.
MATH
CrossRef
Google Scholar
M. Griebel, Multilevel algorithms considered as iterative methods on semidefinite systems SIAM J. Sci. Stat. Comp., 15 (1994), pp. 547–565.
MathSciNet
MATH
CrossRef
Google Scholar
W. Hackbusch, Multi-grid Methods and Applications, Springer-Verlag, Berlin, 1985.
MATH
Google Scholar
—, Theorie und Numerik elliptischer Differentialgleichungen, B.G. Teubner- Verlag, Stuttgart, 1986.
Google Scholar
R. Hiptmair, Canonical construction of finite elements, Tech. Rep. 360, Institut für Mathematik, Universität Augsburg, 1996. Submitted to Math. Comp.
Google Scholar
—, Multilevel Preconditioning for Mixed Problems in Three Dimensions, PhD thesis, Mathematisches Institut, Universität Augsburg, 1996.
Google Scholar
—, Multigrid method for H(div) in three dimensions, Tech. Rep. 368, Institut für Mathematik, Universität Augsburg, 1997. To appear in ETNA.
Google Scholar
—, Multigrid method for Maxwell’s equations, Tech. Rep. 374, Institut für Mathematik, Universität Augsburg, 1997. Submitted to SINUM.
Google Scholar
R. Hiptmair and R. Hoppe, Multilevel preconditioning for mixed problems in three dimensions, Tech. Rep. 359, Mathematisches Institut, Universität Augsburg, 1996. Submitted to Numer. Math.
Google Scholar
R. Hiptmair, T. Schiekofer, and B. Wohlmuth, Multilevel preconditioned augmented Lagrangian techniques for 2nd order mixed problems, Computing, 57 (1996), pp. 25–48.
MathSciNet
MATH
CrossRef
Google Scholar
A. Klawonn, An optimal preconditioner for a class of saddle point problems with a penalty term,Part II: General theory, Tech. Rep. 14/95, Westfälische Wilhelms-Universität Münster, Germany, April 1995. Also available as Technical Report 683 of the Courant Institute of Mathematical Sciences, New York University.
Google Scholar
P. Lin, A sequential regularization method for time-dependent incompressible Navier-Stokes equations, SIAM J. Numer. Anal, 34 (1997), pp. 1051–1071.
MathSciNet
MATH
CrossRef
Google Scholar
G. Makridakis and P. Monk, Time-discrete finite element schemes for Maxwell’s equations, RAIRO M2AN, 29 (1995), pp. 171–197.
MathSciNet
MATH
Google Scholar
J. NÉdÉlec, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315–341.
MathSciNet
MATH
CrossRef
Google Scholar
—, A new family of mixed finite elements in R3, Numer. Math., 50 (1986), pp. 57–81.
Google Scholar
P. Oswald, Preconditioners for discretizations of the biharmonic equation by rectangular finite elements, tech. rep., Friedrich Schiller Universität, Jena, Germany, 1991.
Google Scholar
—, Multilevel Finite Element Approximation, Theory and Applications, Teub- ner Skripten zur Numerik, B.G. Teubner, Stuttgart, 1994.
Google Scholar
J.P. Ciarlet and J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations, Tech. Rep. TR MATH-96–31 (105), Department of Mathematics, The Chinese University of Hong Kong, 1996.
Google Scholar
L.F. Pavarino, Additive Schwarz methods for the p-version finite element method, Numer. Math., 66 (1994), pp. 493–515.
MathSciNet
MATH
CrossRef
Google Scholar
—, Schwarz methods with local refinement for the p-version finite element method, Numer. Math., 69 (1994), pp. 185–211.
Google Scholar
L.F. Pavarino and O.B. Widlund, Preconditioned conjugate gradient solvers for spectral elements in 3D,in Solution Techniques for Large-Scale CFD Problems, W.G. Habashi, ed., John Wiley & Sons, 1995, pp. 249–270.
Google Scholar
Proceedings of the International Workshop on Solution Techniques for Large-Scale CFD Problems held at CERCA, Montrüal, Canada, September 26–28, 1994.
Google Scholar
A. Pehlivanov, G. Carey, and R. Lazarov, Least squares mixed finite elements for second order elliptic problems, SIAM J. Num. Anal., 31 (1994), pp. 1368–1377.
MathSciNet
MATH
CrossRef
Google Scholar
P.A. raviart and J.M. thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, vol. 606 of Springer Lecture Notes in Mathematics, Springer-Verlag, New York, 1977, pp. 292–315.
Google Scholar
B. Smith, P. Bj∅rstad, and W. gropp, Domain decomposition, Cambridge University Press, Cambridge, 1996.
MATH
Google Scholar
A. Toselli, Some numerical results using an additive Schwarz method for Maxwell’s equations, Tech. Rep. 726, Courant Institute, New York University, November 1996.
Google Scholar
—, Overlapping Schwarz methods for Maxwell’s equations in 3D, Tech. Rep. TR-736, Courant-Institute, New York, 1997.
Google Scholar
P. Vassilevski and R. Lazarov, Preconditioned mixed finite element saddle-point elliptic problems, Numer. Lin. Algebra, 2 (1995).
Google Scholar
P. Vassilevski and J. Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems, Numer. Math., 63 (1992), pp. 503–520.
MathSciNet
CrossRef
Google Scholar
O. Widlund, Iterative substructuring methods: Algorithms and theory forelliptic problems in the plane, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant, and J. Périaux, eds., SIAM, Philadelphia, 1986, pp. 113–128.
Google Scholar
B. Wohlmuth, Adaptive Multilevel-Finite-Elemente Methoden zur Lösung elliptischer Randwertprobleme, PhD thesis, TU München, 1995.
MATH
Google Scholar
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, 34 (1992), pp. 581–613.
MathSciNet
MATH
CrossRef
Google Scholar
H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 58 (1986), pp. 379–412.
MathSciNet
CrossRef
Google Scholar
—, Two preconditioners based on the multilevel splitting of finite element spaces, Numer. Math., 58 (1990), pp. 163–184.
Google Scholar
—, Old and new convergence proofs for multigrid methods, Acta Numerica, (1993), pp. 285–326.
Google Scholar
X. Zhang, Multilevel Schwarz methods, Numer. Math., 63 (1992), pp. 521–539.
MathSciNet
MATH
CrossRef
Google Scholar
—, Multilevel Schwarz methods for the biharmonic Dirichlet problem, SIAM J. Sci. Comput., 15 (1994), pp. 621–644.
Google Scholar