Skip to main content

CT: Clinical Applications and Contrast Agents

  • Chapter
Neuroimaging
  • 608 Accesses

Abstract

This chapter discusses the currently used contrast agents and the clinical applications of computed tomography (CT) with special reference to its strengths and weaknesses in the skull, brain, orbit, otic capsule, spine, and CT angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almen T. Angiography with metrizamide. Animal experiments and preliminary clinical experiences. Acta Radiol (Suppl) 1977; 355: 419 – 430.

    CAS  Google Scholar 

  2. Cornell SH, Fischer HW. Comparison of mixtures of metrizoate and iothalamate salts with their methylglucamine solutions by the carotid injection technique. Invest Radiol 1967; 2: 41 – 47.

    Article  PubMed  CAS  Google Scholar 

  3. Fischer HW. Catalog of intravascular contrast media. Radiology 1986; 159: 561 – 563.

    PubMed  CAS  Google Scholar 

  4. Norman D, Enzmann DR, Newton TH. Comparative efficacy of contrast agents in computed tomography scanning of the brain. J Comput Assist Tomogr 1978; 2: 319321.

    Google Scholar 

  5. Sage MR. Kinetics of water-soluble contrast media in the central nervous system. AJR 1983; 141: 815 – 824.

    PubMed  CAS  Google Scholar 

  6. Keller MR, Kessler RM, Brooks RA, Kirkland LR. Optimum energy for performing CT iodinated contrast studies. Brit J Radiol 1980; 53: 576 – 579.

    Article  PubMed  CAS  Google Scholar 

  7. Amin MM, Cohan RH, Reed DN. Ionic and non-ionic contrast media: current status and controversies. Appl Radiol 1993; 28: 41 – 54.

    Google Scholar 

  8. Hardeman MR, Goedhart P, Koen IY. The effect of lowosmolar ionic and nonionic contrast media on human blood viscosity, erythrocyte morphology and aggregation behavior. Invest Radiol 1991; 26: 810 – 819.

    Article  PubMed  CAS  Google Scholar 

  9. Zweiman B, Mishkin MM, Hildreth EA, et al. An approach to the performance of contrast studies in contrast material reactive persons. Ann Intern Med 1975; 83: 159 – 161.

    PubMed  CAS  Google Scholar 

  10. Lalli AF. Urography, shock reaction and repeated urography. AJR 1975; 125 (1): 264 – 268.

    CAS  Google Scholar 

  11. Shehadi WH. Adverse reaction to intravascularly administered contrast media. AJR 1975; 124 (1): 145 – 152.

    CAS  Google Scholar 

  12. Shehadi WH. Contrast media adverse reactions: occurrence, recurrence and distribution patterns. Radiology 1982; 143: 11 – 17.

    PubMed  CAS  Google Scholar 

  13. Cohan RH, Dunnick NR. Intravascular contrast media: adverse reactions. AJR 1987; 149: 665 – 670.

    PubMed  CAS  Google Scholar 

  14. Witten DM, Hirsch FD, Hartman GW. Acute reactions to urographic contrast medium: incidence, clinical characteristics and relationship to history of hypersensitivity states. AJR 1973; 119: 832 – 840.

    CAS  Google Scholar 

  15. Fischer HW, Doust VL. An evaluation of pretesting in the problem of serious and fatal reactions to excretory urography. Diag Radiol 1972; 103: 497 – 501.

    CAS  Google Scholar 

  16. Brice J. Adverse effects sideline nonionic dimeric agent: Schering takes loss after recall of Isovist 280. Diag Imaging 1996: 13 – 15.

    Google Scholar 

  17. Schrott KM, et al. Iohexol in excretory urography. Fortschritte der Medizin 1986; 104: 153 – 156.

    PubMed  CAS  Google Scholar 

  18. Spring DB, et al. Contrast material-related deaths spontaneously reported to the U.S. Food and Drug Administration 1978–1994: changes with the advent of low-osmolar contrast agents. Work presented at RSNA 1995.

    Google Scholar 

  19. Kendall BE, Pullicino P. Intravascular contrast injection in ischemic lesions: II. effect on prognosis. Neuroradiology 1980; 19: 241 – 243.

    PubMed  CAS  Google Scholar 

  20. Scott WR. Seizures: a reaction to contrast media for computed tomography of the brain. Radiology 1980; 137: 359361.

    Google Scholar 

  21. Hayman LA, Evans RA, Fahr LM, Hinck VC. Renal consequences of rapid high dose contrast CT. AJR 1980; 134: 553 – 555.

    PubMed  CAS  Google Scholar 

  22. Deray G, Bellin M-F, Boulechfar H, et al. Nephrotoxicity of contrast media in high-risk patients with renal insufficiency: comparison of low-and high-osmolar contrast agents. Am J Nephrol 1991; 11: 309 – 312.

    Article  PubMed  CAS  Google Scholar 

  23. Dachman AH. New contraindication to intravascular iodinated contrast material. Radiology 1995;197(2):545, 546.

    PubMed  CAS  Google Scholar 

  24. Hirsch IB. Approach to the patient with diabetes undergoing a vascular or interventional procedure. JVIR 1997; 8: 329 – 336.

    Article  PubMed  CAS  Google Scholar 

  25. van Sonnenberg E, Neff C, Pfister RC. Life-threatening hypotensive reactions to contrast media administration: comparison of pharmacologic and fluid therapy. Radiology 1987;162 (1): 15 – 19

    Google Scholar 

  26. McClennan BL. Adverse reactions to iodinated contrast media. Invest Radiol 1994; 29 (1): S46 – S50.

    Article  PubMed  Google Scholar 

  27. Lasser EC. Pretreatment with cortiocosteroids to prevent reactions to iv contrast material: overview and implications. AJR 1988; 150: 257 – 259.

    PubMed  CAS  Google Scholar 

  28. Greenberger PA, Patterson R. Two pretreatment regimens for high-risk patients receiving radiographic contrast media. J Allergy Clin Immunol 1984; 74: 540 – 543.

    Article  PubMed  CAS  Google Scholar 

  29. Manashil GD. Premedication with histamine, and histamine, blockers to prevent nausea and vomiting when highosmolar contrast agents are used. RSNA 1995.

    Google Scholar 

  30. Katayama H, Yamaguchi K, Kozuka T, et al. Adverse reactions to ionic and nonionic contrast media: a report from the Japanese committee on the safety of contrast media. Radiology 1990; 175 (3): 621 – 628.

    PubMed  CAS  Google Scholar 

  31. Palmer FJ. The RACR survey of intravenous contrast media reactions: final report. Australasian Radiol 1988; 32: 426 – 428.

    Article  CAS  Google Scholar 

  32. Greenberger PA, Patterson R. The prevention of immediate generalized reactions to radiocontrast media in high-risk patients. J Allergy Clin Immunol 1991;87(4):867–872.

    Article  PubMed  CAS  Google Scholar 

  33. Wolf GL. Safer, more expensive iodinated contrast agents: how do we decide? Radiology 1986; 159: 557, 558.

    Google Scholar 

  34. White Jr. RI, Halden Jr. WJ. Liquid gold: low-osmolality contrast media. Radiology 1986; 159: 559, 560.

    Google Scholar 

  35. McCullough M, Davies P, Richardson R. A large trial of intravenous conray 325 and niopam 300 to assess immediate and delayed reactions. Br J Radio! 1989; 62: 260 – 265.

    Article  CAS  Google Scholar 

  36. Bettmann MA. Contrast agent, regulation and adverse events safety and efficacy of ionated contrast agents. Invest Radiol 1994; 1: 533 – 536.

    Google Scholar 

  37. Powe NR, Steinberg EP, Erickson JE, et al. Contrast medium-induced adverse reactions: economic outcome. Radiology 1988; 169: 163 – 168.

    PubMed  CAS  Google Scholar 

  38. Intermountain Health Care Adult Imaging Guidelines. 1997 Revision.

    Google Scholar 

  39. Sage MR. Blood-brain barrier: phenomenon of increasing importance to the imaging clinician. AJR 1982;138:887–894.

    PubMed  CAS  Google Scholar 

  40. Marks JE, Gado M. Serial computed tomography of primary brain tumors following surgery, irradiation and chemotherapy. Radiology 1977;125:119–125.

    PubMed  CAS  Google Scholar 

  41. Tchang S, Scotti G, Terbrugge K, Melancon D, et al. Computerized tomography as a possible aid to histological grading of supratentorial gliomas. J Neurosurg 1977; 46: 735 – 739.

    Article  PubMed  CAS  Google Scholar 

  42. Butler AR, Horii SC, Kricheff II, Shannon MB, Budzilovich GN. Computed tomography in astrocytomas. Radiology 1978; 129: 433 – 439.

    PubMed  CAS  Google Scholar 

  43. Piepmeier JM. Observations on the current treatment of low-grade astrocytic tumors of the cerebral hemispheres. J Neurosurg 1987; 67: 177 – 181.

    Article  PubMed  CAS  Google Scholar 

  44. Murovic J, Turowski K, Wilson CB, Hoshino T, Levin V. Computerized tomography in the prognosis of malignant cerebral gliomas. J Neurosurg 1986; 65: 799 – 806.

    Article  PubMed  CAS  Google Scholar 

  45. Wing SD, Norman D, Pollock JA, Newton TH. Contrast enhancement of cerebral infarcts in computed tomography. Radiology 1976; 121: 89 – 92.

    PubMed  CAS  Google Scholar 

  46. Enzmann DR, Britt RH, Yeager AS. Experimental brain abscess evolution, computed tomographic and neuropathologic correlation. Radiology 1979; 133: 122 – 131.

    Google Scholar 

  47. Viñuela FV, Fox AJ, Debrun GM, Feasby TE, Ebers GC. New perspectives in computed tomography of multiple sclerosis. AJR 1982; 139: 123 – 127.

    PubMed  Google Scholar 

  48. Albright AL, Guthkelch AN, Packer RJ, et al. Prognostic factors in pediatric brain-stem gliomas. J Neurosurg 1986; 65: 751 – 755.

    Article  PubMed  CAS  Google Scholar 

  49. Wu E, Tang Y, Zhang Y, Bai R. CT in diagnosis of acoustic neuromas. AJNR 1986; 7: 645 – 650.

    PubMed  CAS  Google Scholar 

  50. Hayman LA, Evans RA, Hinck VC. Delayed high iodine dose contrast computed tomography: cranial neoplasms. Radiology 1980; 136: 677 – 684.

    PubMed  CAS  Google Scholar 

  51. Davis JM, Davis KR, Newhouse J, Pfister RC. Expanded high iodine dose in computed cranial tomography: a preliminary report. Radiology 1979; 131: 373 – 380.

    PubMed  CAS  Google Scholar 

  52. Shalen PR, Hayman LA, Wallace S, Handel SF. Protocol for delayed contrast enhancement in computed tomography of cerebral neoplasia. Radiology 1981; 139: 397402.

    Google Scholar 

  53. Reese L, Carr TJ, Nicholson RL, Lepp EK. Magnetic resonance imaging for detecting lesions of multiple sclerosis: comparison with computed tomography and clinical assessment. CMAJ 1986; 135: 639 – 643.

    PubMed  CAS  Google Scholar 

  54. Sze G, Shin J, Krol G, Johnson C, et al. Intraparenchymal brain metastases: MR imaging versus contrast-enhanced CT. Radiology 1988; 168: 187 – 194.

    PubMed  CAS  Google Scholar 

  55. Takeda N, Tanaka R, Nakai O, Ueki K. Dynamics of contrast enhancement in delayed computed tomography of brain tumors: tissue-blood ratio and differential diagnosis. Radiology 1982; 142: 663 – 668.

    PubMed  CAS  Google Scholar 

  56. Michael AS, Mafee MF, Valvassori GE, Tan WS. Dynamic computed tomography of the head and neck: differential diagnostic value. Radiology 1985; 154: 413 – 419.

    PubMed  CAS  Google Scholar 

  57. Som PM, Lanzieri CF, Sacher M, Lawson W, Biller HF. Extracranial tumor vascularity: determination by dynamic CT scanning. Part I: concepts and signature curves. Radiology 1985; 154: 401 – 405.

    PubMed  CAS  Google Scholar 

  58. Som PM, Lanzieri CF, Sacher M, Lawson W, Biller HF. Extracranial tumor vascularity: determination by dynamic CT scanning. Part II: the unit approach. Radiology 1985; 154: 407 – 412.

    PubMed  CAS  Google Scholar 

  59. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. A theoretical analysis. Radiology 1980; 137: 679 – 686.

    PubMed  CAS  Google Scholar 

  60. Norman D, Axel L, Berninger WH, et al. Dynamic computed tomography of the brain: techniques, data analysis and applications. AJR 1981; 136: 759 – 770.

    PubMed  CAS  Google Scholar 

  61. Dobben GD, Valvassori GE, Mafee MF, Berninger WH. Evaluation of brain circulation by rapid rotational computed tomography. Radiology 1979; 133: 105 – 111.

    PubMed  CAS  Google Scholar 

  62. Drayer BP, Heinz ER, Dujovny M, et al. Patterns of brain perfusion: dynamic computed tomography using intravenous contrast enhancement. J Comput Assist Tomogr 1979; 3 (5): 633 – 640.

    Article  PubMed  CAS  Google Scholar 

  63. Tan WS, Wilbur AC, Jafar JJ, Spigos DG, Abejo R. Brain death: use of dynamic CT and intravenous digital subtraction angiography. AJNR 1987; 8: 123 – 125.

    PubMed  CAS  Google Scholar 

  64. Hilal SK, Dauth GW, Hess KH, Gilman S. Development and evaluation of a new water-soluble iodinated myelographic contrast medium with markedly reduced convulsive effects. Radiology 1978; 126: 417 – 422.

    PubMed  CAS  Google Scholar 

  65. Haughton VM, Ho K-C. The risk of arachnoiditis from experimental nonionic contrast media. Radiology 1980; 136: 395 – 397.

    PubMed  CAS  Google Scholar 

  66. Haughton VM, Ho K-C, Unger GF. Arachnoiditis following myelography with water-soluble agents. Radiology 1977; 125: 731 – 733.

    PubMed  CAS  Google Scholar 

  67. Kieffer SA, Binet EF, Esquerra JV, Hantman RP, Gross CE. Contrast agents for myelography: clinical and radiological evaluation of amipaque and pantopaque. Radiology 1978; 129: 695 – 705.

    PubMed  CAS  Google Scholar 

  68. Valk J, Crezée FC,, de Slegte RGM et al. Iohexol 300 mg I/ ml versus lopamidol 300 mg I/ml for cervical myelography double blind trial. Neuroradiology 1987; 29: 202 – 205.

    Article  PubMed  CAS  Google Scholar 

  69. Sand T, Stovner U, Dale L, Salvesen R. Side effects after diagnostic lumbar puncture and lumbar iohexol myelography. Neuroradiology 1987; 29: 385 – 388.

    Article  PubMed  CAS  Google Scholar 

  70. Kuuliala IK, Göransson HJ. Adverse reactions after iohexol lumbar myelography: influence of postprocedural positioning. AJNR 1987; 8: 547, 548.

    Google Scholar 

  71. Grunert P, Pendl G. Cerebral seizure following lumbar myelography with iopamidol. Radiology 1986;26(11):526, 527.

    CAS  Google Scholar 

  72. Duchin KL, Drayer BP, Ross M, Allen S, Frantz M. Pharmacokinetics of iopamidol after intrathecal administration in humans. AJNR 1986; 7: 895 – 898.

    PubMed  CAS  Google Scholar 

  73. Wilcox J, Evill CA, Sage MR. Rate of clearance of intrathecal iopamidol in the dog: experimental work. Neuroradiology 1986; 28: 359 – 361.

    Article  PubMed  CAS  Google Scholar 

  74. Hammer B. Experiences with intrathecally enhanced computed tomography. Neuroradiology 1980; 19: 221 – 228.

    Article  PubMed  CAS  Google Scholar 

  75. Jinkins JR, Bashir R, Al-Kawi MZ, Siquiera E. The parenchymal CT myelogram: in vivo imaging of the gray matter of the spinal cord. AJNR 1987; 8: 979 – 982.

    PubMed  CAS  Google Scholar 

  76. Ketonen L, Gyldensted C. Lumbar disc disease evaluated by myelography and post myelography spinal computed tomography. Neuroradiology 1986; 28: 144 – 149.

    Article  PubMed  CAS  Google Scholar 

  77. Wolpert SM, Scott RM. The value of metrizamide CT cisternography in the management of cerebral arachnoid cysts. AJNR 1981; 2: 29 – 35.

    PubMed  CAS  Google Scholar 

  78. Luotonen J, Jokinen K, Lattinen J. Localization of a CSF fistula by metrizamide CT cisternography. J Laryngol Otol 1986; 100 (8): 955 – 958.

    Article  PubMed  CAS  Google Scholar 

  79. Wakhloo AK, van Velthoven V, Schumacher M, Krauss JK. Evaluation of MR imaging, digital subtraction cisternography and CT cisternography in diagnosing CSF fistula. Acta Neurochir (Wien) 1991; 111: 119 – 127.

    Article  CAS  Google Scholar 

  80. Pompili A, Iachetti M, Bianchini AL, et al. CT iopamidol cisternographic diagnosis of coexisting partial empty sella and pituitary adenoma. Report of two cases. Neuroradiology 1987; 29: 93, 94.

    Google Scholar 

  81. Drayer BP, Rosenbaum AE, Kennerdell JS, et al. Computed tomographic diagnosis of suprasellar masses by intrathecal enhancement. Radiology 1977; 123: 339 – 344.

    PubMed  CAS  Google Scholar 

  82. Bentson JR, Mancuso AA, Winter J, Hanafee WN. Combined gas cisternography and edge-enhanced computed tomography of the internal auditory canal. Radiology 1980; 136: 777 – 779.

    PubMed  CAS  Google Scholar 

  83. Barrs LTC DM, Luxford WM, Becker TS, Brackman DE. Computed tomography with gas cisternography for detection of small acoustic tumors: a study of five false-positive results. Arch Otolaryngol 1984;110:535–537.

    Article  PubMed  CAS  Google Scholar 

  84. Kricheff II, Pinto RS, Bergeron T, Cohen N. Air-CT cisternography and canalography for small acoustic neuromas. AJNR 1980; 1: 57 – 63.

    PubMed  CAS  Google Scholar 

  85. Solti-Bohman LG, Magaram DL, Lo WWM, et al. Gas CT cisternography for detection of small acoustic nerve tumors. Radiology 1984; 150: 403 – 407.

    PubMed  CAS  Google Scholar 

  86. Chemical Rubber Co. CRC Handbook of Chemistry and Physics 1966;1541–1542; 46th ed.

    Google Scholar 

  87. Obrist WD, Thompson HK, Wang HS, Wilkinson WE. Regional cerebral blood flow estimated by xenon inhalation. Stroke 1975; 6: 245 – 256.

    Article  PubMed  CAS  Google Scholar 

  88. Latchaw RE, Yonas H, Pentheny SL, Gur D. Adverse reactions to xenon-enhanced CT cerebral blood flow determination. Radiology 1987; 163: 251 – 254.

    PubMed  CAS  Google Scholar 

  89. Yonas H, Grundy B, Gur D, et al. Side effects of xenon inhalation. J Comput Assist Tomogr 1981;5(4):591, 592.

    Article  PubMed  CAS  Google Scholar 

  90. Lindstrom WW. Personal Communication. Picker International Inc 1988; Ohio.

    Google Scholar 

  91. Kelcz F, Hilal SK, Hartwell P, Joseph PM. Computed tomographic measurement of the xenon brain-blood partition coefficient and implications for regional cerebral blood flow: a preliminary report. Radiology 1978; 127: 385 – 392.

    PubMed  CAS  Google Scholar 

  92. Fatouros PP, Wist AO, Kishore PRS, et al. Xenon/computed tomography cerebral blood flow measurements: methods and accuracy. Invest Radiol 1987; 22: 705 – 711.

    Article  PubMed  CAS  Google Scholar 

  93. Kearfott KJ, Rottenberg DA, Deck MDF. Optimization of xenon-enhanced CT studies: beam energy, enhancement, root mean square deviation and repeatability. AJNR 1983; 4: 195 – 199.

    PubMed  CAS  Google Scholar 

  94. Touho H, Karasawa J, Nakagawara J, et al. Mapping of local cerebral blood flow with stable xenon-enhanced CT and the curve-fitting method of analysis. Radiology 1988; 168: 207 – 212.

    PubMed  CAS  Google Scholar 

  95. Winkler S, Turski P. Potential hazards of xenon inhalation. AJNR 1985; 6: 974, 975.

    Google Scholar 

  96. Drayer BP, Dujovny M, Wolfson SK, et al. Xenon-and iodine-enhanced CT of diffuse cerebral circulatory arrest. AJR 1980; 135: 97 – 102.

    PubMed  CAS  Google Scholar 

  97. Darby JM, Yonas H, Gur D, Latchaw RE. Xenon-enhanced computed tomography in brain death. Arch Neurol 987;44(5):551–554.

    Google Scholar 

  98. Pistoia F, Johnson DW, Darby JM, et al. The role of xenon CT measurements of cerebral blood flow in the clinical determination of brain death. AJNR 1991; 12: 97 – 103.

    PubMed  CAS  Google Scholar 

  99. Drayer BP, Gur D, Wolfson SK, Cook EE. Experimental xenon enhancement with CT imaging: cerebral applications. AJR 1980; 134: 39 – 44.

    PubMed  CAS  Google Scholar 

  100. Drayer BP, Gur D, Yonas H, et al. Abnormality of the xenon brain: blood partition coefficient and blood flow in cerebral infarction: an in vivo assessment using transmission computed tomography. Radiology 1980; 135: 349354.

    Google Scholar 

  101. Erba SM, Horton JA, Latchaw RE, et al. Balloon test occlusion of the internal carotid artery with stable xenon/ CT cerebral blood flow imaging. AJNR 1988; 9: 533 – 538.

    PubMed  CAS  Google Scholar 

  102. Bradley WG, Waluch V, Yadley RA, Wycoff RR. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology 1984; 152: 695 – 702.

    PubMed  Google Scholar 

  103. Brant-Zawadzki M, Davis PL, Crooks LE, et al. NMR demonstration of cerebral abnormalities: comparison with CT. AJNR 1983; 4: 117 – 124.

    Google Scholar 

  104. Haughton VM, Rimm AA, Sobocinski KA, et al. A blinded clinical comparison of MR imaging and CT in neuroradiology. Radiology 1986; 160: 751 – 755.

    PubMed  CAS  Google Scholar 

  105. Zimmerman RA, Bilaniuk LT, Johnson MH, et al. MRI of central nervous system: early clinical results. AJNR 1986; 7: 587 – 594.

    PubMed  CAS  Google Scholar 

  106. Gomori JM, Grossman RI, Goldberg HI, Zimmerman RA, Bilaniuk LT. Intracranial hematomas: imaging by high-field MR. Radiology 1985; 157 (1): 87 – 93.

    PubMed  CAS  Google Scholar 

  107. Chakeres DW, Bryan RN. Acute subarachnoid hemorrhage: in vitro comparison of magnetic resonance and computed tomography. AJNR 1986; 7: 223 – 228.

    PubMed  CAS  Google Scholar 

  108. Snow RB, Zimmerman RD, Gandy SE, Deck MDF. Comparison of magnetic resonance imaging and computed tomography in the evaluation of head injury. Neurosurgery 1986; 8 (1): 45 – 52.

    Article  Google Scholar 

  109. Mawhinney RR, Buckley JH, Holland IM, Worthington BS. The value of magnetic resonance imaging in the diagnosis of intracranial meningiomas. Clin Radiol 1986; 37: 429 – 439.

    Article  PubMed  CAS  Google Scholar 

  110. Atlas SW, Grossman RI, Hackney DB, et al. Calcified intracranial lesions: detection with gradient- echo-acquisition rapid MR imaging. AJNR 1988; 9: 253259.

    Google Scholar 

  111. Holland BA, Kucharcyzk W, Brant-Zawadzki M, et al. MR imaging of calcified intracranial lesions. Radiology 1985; 157: 353 – 356.

    PubMed  CAS  Google Scholar 

  112. Davis PC, Hoffman JC, Spencer T, Tindall GT, Braun IF. MR imaging of pituitary adenoma: CT, clinical and surgical correlation. AJNR 1987; 8: 107 – 112.

    Google Scholar 

  113. Marcovitz S, Wee R, Chan J, Hardy J. Diagnostic accuracy of preoperative CT scanning of pituitary somatotroph adenomas. AJNR 1988; 9: 19 – 22.

    PubMed  CAS  Google Scholar 

  114. Kulkarni MV, Lee KF, McArdle CB, Yeakley JW, Haar FL. 1.5-T MR imaging of pituitary microadenomas: technical considerations and CT correlation. AJNR 1988; 9: 5 – 11.

    PubMed  CAS  Google Scholar 

  115. Steiner E, Imhof H, Knosp E. Gd-DTPA enhanced high resolution MR imaging of pituitary adenomas. RadioGraphics 1989; 9 (4): 587 – 598.

    PubMed  CAS  Google Scholar 

  116. Bilaniuk LT, Atlas SW, Zimmerman RA. Magnetic resonance imaging of the orbit. Radiol Clin NA 1987; 25 (3): 509 – 528.

    CAS  Google Scholar 

  117. Mafee MF, Aimi K, Kahen HL, Valvassori GE, Capek V. Chronic otomastoiditis: a conceptual understanding of CT findings. Radiology 1986; 160: 193 – 200.

    PubMed  CAS  Google Scholar 

  118. Swartz JD, Glazer AU, Faeber EN, Capitanio MA, Popky GL. Congenital middle-ear deafness: CT study. Radiology 1986; 159: 187 – 190.

    PubMed  CAS  Google Scholar 

  119. Curati WL, Graif M, Kingsley DPE, et al. MRI in acoustic neuroma: a review of 35 patients. Neuroradiology 1986; 28: 208 – 214.

    Article  PubMed  CAS  Google Scholar 

  120. Koenig H, Lenz M, Sauter R. Temporal bone region: high-resolution MR imaging using surface coils. Radiology 1986; 159: 191 – 194.

    PubMed  CAS  Google Scholar 

  121. Schipper J, Kardaun JWPF, Braakman R, van Dongen KJ, Blaauw G. Lumbar disk herniation: diagnosis with CT or myelography? Radiology 1987; 165: 227 – 231.

    PubMed  CAS  Google Scholar 

  122. Yang PJ, Seeger JF, Dzioba RB, et al. High-dose iv contrast in CT scanning of the postoperative lumbar spine. AJNR 1986; 7: 703 – 707.

    PubMed  CAS  Google Scholar 

  123. Firooznia H, Kricheff II, Rafii M, Golimbu C. Lumbar spine after surgery: examination with intravenous contrast-enhanced CT. Radiology 1987; 163: 221 – 226.

    PubMed  CAS  Google Scholar 

  124. Mall JC, Kaiser JA, Heithoff KB. Postoperative spine. In: Computed Tomography of the Spine and Spinal Cord. Newton TH, Potts DG, ed; San Anselmo, CA: Clavedel Press. 1983; 187 – 204.

    Google Scholar 

  125. Teplick JG, Haskin ME. Intravenous contrast-enhanced CT of the postoperative lumbar spine: improved identification of recurrent disk herniation, scar, arachnoiditis and diskitis. AJR 1984; 143: 845 – 855.

    PubMed  CAS  Google Scholar 

  126. Modic MT, Masaryk T, Boumphrey, Goormastic M, Bell G. Lumbar herniated disk disease and canal stenosis: prospective evaluation by surface coil MR, CT and myelography. AJNR 1986; 7: 709 – 717.

    Google Scholar 

  127. Modic MT, Masaryk KT, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology 1988; 168: 177 – 186.

    PubMed  CAS  Google Scholar 

  128. Haughton VM. MRimaging of the spine. Radiology 1988;166:297–301.

    Google Scholar 

  129. Hedberg MC, Drayer BP, Flom RA, Hodak JA, Bird CR. Gradient echo (GRASS) MR imaging in cervical radiculopathy. AJR 1988; 150: 683 – 689.

    PubMed  CAS  Google Scholar 

  130. Karnaze MG, Gado MH, Sartor KJ, Hodges FJ. Comparison of MR and CT myelography in imaging the cervical and thoracic spine. AJNR 1987; 8: 983 – 989.

    Google Scholar 

  131. Masaryk TJ, Modic MT, Geisinger MA, et al. Cervical myelopathy: a comparison of magnetic resonance and myelography. J Comput Assist Tomogr 1986;10(2):184194.

    Google Scholar 

  132. McAfee PC, Bohlman HH, Han JS, Salvagno RT. Comparison of nuclear magnetic resonance imaging and computed tomography in the diagnosis of upper cervical spinal cord compression. Spine 1986; 11 (4): 295 – 304.

    Article  PubMed  CAS  Google Scholar 

  133. Bosley TM, Cohen DA, Schatz NH, et al. Comparison of metrizamide computed tomography and magnetic resonance imaging in the evaluation of lesions at the cervicomedullary junction. Neurology 1985;35(4):485492.

    Google Scholar 

  134. Tarr RW, Drolshagen LF, Kerner TC, et al. MR imaging of recent spinal trauma. J Comput Assist Tomogr 1987; 11 (3): 412 – 417.

    Article  PubMed  CAS  Google Scholar 

  135. Terrier F, Raveh J, Burckhardt B. Conventional tomography for the diagnosis of fronto-basal fractures. Ann Radiol 1984; 27: 391 – 399.

    PubMed  CAS  Google Scholar 

  136. Virapongse C, Shapiro M, Gmitro A, Sarwar M. Three-dimensional computed tomographic reformation of the spine, skull and brain from axial images. Neurosurgery 1986; 18 (1): 53 – 58.

    Article  PubMed  CAS  Google Scholar 

  137. Kido DK, Gould R, Taati F, Duncan A, Schnur J. Comparative sensitivity of CT scans, radiographs and radionuclide bone scans in detecting metastatic calvarial lesions. Radiology 1978; 128: 371 – 375.

    PubMed  CAS  Google Scholar 

  138. Paling MR, Black WC, Levine PA, Cantrell RW. Tumor invasion of the anterior skull base: a comparison of MR and CT studies. J Comput Assist Tomogr 1987;11(5):824–830.

    Article  PubMed  CAS  Google Scholar 

  139. Zimmerman RA. Pediatric cranial cervical spiral CT. Neuroradiology 1992; 34: 112 – 116.

    Article  PubMed  CAS  Google Scholar 

  140. Levy RA. Three-dimensional craniocervical helical CT: is isotropic imaging possible? Radiology 1995;197(3):645–648.

    PubMed  CAS  Google Scholar 

  141. Suojanen JN, Mukherji SK, Dupuy DE, Takahashi JH, Costello P. Spiral CT in evaluation of head and neck lesions: work in progress. Radiology 1992;183(1):281–283.

    PubMed  CAS  Google Scholar 

  142. Dillon EH, van Leeuwen MS, Fernandez MA, Mali WPTM. Spiral CT angiography: pictorial essay. AJR 1993; 160: 1273 – 1278.

    PubMed  CAS  Google Scholar 

  143. Heiken JP, Brink JA, Vannier MW. Spiral (helical) CT. Radiology 1993; 189 (3): 647 – 656.

    PubMed  CAS  Google Scholar 

  144. Napel S, Marks MP, Rubin GD, et al. CT angiography with spiral CT and maximum intensity projection. Radiology 1992; 185 (2): 607 – 610.

    PubMed  CAS  Google Scholar 

  145. Marks MP. Computed tomography and angiography. Neuro Clin NA 1996; 6 (4): 899 – 909.

    CAS  Google Scholar 

  146. Marks MP, Napel S, Jordan JE, Enzmann DR. Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography. AJR 1993; 160: 1267 – 1271.

    PubMed  CAS  Google Scholar 

  147. Cumming MJ, Morrow IM. Carotid artery stenosis: a prospective comparison of CT angiography and conventional angiography. 1994 ARRS Executive Council Award. AJR 1994; 163: 517 – 523.

    PubMed  CAS  Google Scholar 

  148. Schwartz RB, Jones KM, Chernoff DM, et al. Common carotid artery bifurcation: evaluation with spiral CT—work in progress. Radiology 1992; 185 (2): 513 – 519.

    PubMed  CAS  Google Scholar 

  149. Vieco PT, Shuman WP, Alsofrom GF, Gross CE. Detection of circle of Willis aneurysms in patients with acute subarachnoid hemorrhage: a comparison of CT angiography and digital subtraction angiography. AJR 1995; 165: 425 – 430.

    PubMed  CAS  Google Scholar 

  150. Schwartz RB, Tice HM, Hooten SM, Hsu L, Stieg PE. Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography. Radiology 1994; 192: 717 – 722.

    PubMed  CAS  Google Scholar 

  151. Aoki S, Sasaki Y, Machida T,Ohkubo T, et al. Cerebral aneurysms: detection and delineation using 3-D-CT angiography. AJNR 1992; 13: 1115 – 1120.

    PubMed  CAS  Google Scholar 

  152. Reuben PA, et al. Spiral CT of an orbital venous malformation. AJNR 1995; 16: 1255 – 1257.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gibby, W.A. (2000). CT: Clinical Applications and Contrast Agents. In: Zimmerman, R.A., Gibby, W.A., Carmody, R.F. (eds) Neuroimaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1152-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1152-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7025-6

  • Online ISBN: 978-1-4612-1152-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics