Skip to main content

Psychoacoustic Studies of Dolphin and Whale Hearing

  • Chapter
Book cover Hearing by Whales and Dolphins

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 12))

Abstract

Whales and dolphins have evolved in a sensory world very unlike our own. Although one can guess what the perceptions of a cetacean might be, it is impossible to “get inside a dolphins head” and experience what it must be like to hear sounds over 100kHz and discern fine details of the environment, conspecifics, and prey via echolocation. It is possible, however, using psychophysical techniques first developed for human measurements, to characterize some properties of cetacean perception and accurately measure the acoustic sensations that are experienced by whales and dolphins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen S (1970) Auditory sensitivity of the harbor porpoise, Phocoena phocoena. In: Pilleri G (ed) Investigations on Cetacea, Vol. 2. Berne, Switzerland: Berne-Bümpliz, pp. 255–259.

    Google Scholar 

  • Au WWL (1993) The Sonar of Dolphins. New York: Springer-Verlag.

    Book  Google Scholar 

  • Au WWL, Banks K (1998) The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. J Acoust Soc Am 103:41–47.

    Article  Google Scholar 

  • Au WWL, Moore PWB (1984) Receiving beam patterns and directivity indices of the Atlantic bottlenose dolphin, Tursiops truncatus. J Acoust Soc Am 75:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Au WWL, Moore PWB (1990) Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88:1635–1638.

    Article  PubMed  CAS  Google Scholar 

  • Au WWL, Moore PWB, Pawloski DA (1988) Detection of complex echoes in noise by an echolocating dolphin. J Acoust Soc Am 83:662–668.

    Article  PubMed  CAS  Google Scholar 

  • Aubauer R, Au WWL, Pawloski JL, Pawloski DA, Nachtigall PE (1998) Discrimination of acoustically simulated and real underwater targets by dolphins. Abstracts of the World Marine Mammal Science Conference, 20–24 January 1998, Monaco.

    Google Scholar 

  • Brill RL, Sevenich ML, Sullivan TJ, Sustman JD, Witt RE (1988) Behavioral evidence for hearing through the lower jaw by an echolocating dolphin, Tursiops truncatus. Mar Mamm Sci 4:223–230.

    Article  Google Scholar 

  • Dolphin WF, Au WWL, Nachtigall PE, Pawloski J (1995) Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Phys 177:235–245.

    Google Scholar 

  • Dudok van Heel WH (1962) Sound and cetacea. Neth J of Sea Research 1:407–507.

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysical Databook. Winnetka, Illinois: Hill-Fay Associates.

    Google Scholar 

  • Fechner GT (1860) Elemente der Psychophysik. Leipzig, Germany: Breitkopf u Hartel.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Article  Google Scholar 

  • Fraser FC (1947) Sound emitted by dolphins. Nature160:754.

    Article  Google Scholar 

  • Gescheider GA (1997) Psychophysics: The Fundamentals, 3rd ed. Mahwah, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Green DM (1976) An Introduction to Hearing. New York: John Wiley & Sons.

    Google Scholar 

  • Griffin DR (1950) Measurements of the ultrasonic cries of bats. J Acoust Soc Am 22:247–255.

    Article  Google Scholar 

  • Griffin DR (1958) Listening in the Dark. Yale University Press New Itaven.

    Google Scholar 

  • Griffin DR, Galambos R (1941) The sensory basis of obstacle avoidance by flying bats. J Exp 2001, 86:481–506.

    Google Scholar 

  • Hall JD, Johnson CS (1972) Auditory thresholds of a killer whale, Orcinus orca Linnaeus. J Acoust Soc Am 51:515–517.

    Article  Google Scholar 

  • Herman LM, Arbeit WR (1972) Frequency difference limons in the bottlenose dolphin: 1–70Kc/s. J Aud Res 2:109–120.

    Google Scholar 

  • Hughes JW (1946) The threshold of audition for short periods of stimulation. Proc of the Roy Soc (London) 133:486–490.

    Article  Google Scholar 

  • Jacobs DW (1972) Auditory frequency discrimination in the Atlantic bottlenose dolphin Tursiops truncatus Montague: a preliminary report. J Acoust Soc Am 52:696–698.

    Article  Google Scholar 

  • Jacobs DW, Hall JD (1972) Auditory thresholds of a fresh water dolphin, Inia geoffrensis Blainville. J Acoust Soc Am 51:530–533.

    Article  Google Scholar 

  • Johnson CS (1966) Auditory thresholds of the bottlenosed porpoise (Tursiops truncatus Montagu). U S Naval Ordnance Test Station (NOTS) TP 4178.

    Google Scholar 

  • Johnson CS (1967) Sound detection thresholds in marine mammals. In:Tavolga WN (ed) Marine Bioacoustics. New York: Pergamon, pp. 247–260.

    Google Scholar 

  • Johnson CS (1968a) Relation between absolute threshold and duration-of-tone pulses in the bottlenosed porpoise. J Acoust Soc Am 43:757–763.

    Article  PubMed  CAS  Google Scholar 

  • Johnson CS (1968b) Masked tonal thresholds in the bottlenosed porpoise. J Acoust Soc Am 44:965–967.

    Article  PubMed  CAS  Google Scholar 

  • Johnson CS (1971) Auditory masking of one pure tone by another in the bottlenosed porpoise. J Acoust Soc Am 49:1317–1318.

    Article  Google Scholar 

  • Johnson CS, McManus MW, Skaar D (1989) Masked tonal hearing thresholds in the beluga whale. J Acoust Soc Am 85:2651–2654.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg WN (1953) Ultrasonic hearing in the porpoise, Tursiops truncatus. J Comp Physiol Psych 46:446–450.

    Article  Google Scholar 

  • Kellogg WN, Kohler R (1952) Reactions of the porpoise to ultrasonic frequencies. Science 116:250–252.

    Article  PubMed  CAS  Google Scholar 

  • Kellogg WN, Kohler R, Morris HN (1953) Porpoise sounds as sonar signals. Science 117:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Ketten DR (1994) Functional analyses of whale ears: adaptations for underwater hearing. IEEE Proceedings in Underwater Acoustics 1:264–270.

    Google Scholar 

  • Ketten DR (1997) Structure and function in whale ears. Bioacoustics 8:103–135.

    Article  Google Scholar 

  • Ljungblad DK, Scoggins PD, Gilmartin WG (1982) Auditory thresholds of a captive Eastern Pacific bottle-nosed dolphin, Tursiops spp. J Acoust Soc Am 72:1726–1729.

    Article  PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Article  Google Scholar 

  • Møhl B (1967) Frequency discrimination in the common seal and a discussion of the concept of upper hearing limit. In: Albers VA (ed) Underwater Acoustics, Vol. 2. New York: Plenum Press, pp. 43–54.

    Google Scholar 

  • Møhl B, Au WWL, Pawloski J, Nachtigall PE (1999) Dolphin hearing: Relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J Acoust Soc Am 105:3421–3424.

    Article  PubMed  Google Scholar 

  • Moore PWB, Au WWL (1982) Masked pure-tone thresholds of the bottlenosed dolphin (Tursiops truncatus) at extended frequencies. J Acoust Soc Am 72(suppl):S42.

    Article  Google Scholar 

  • Moore PWB, Au WWL (1983) Critical ratio and bandwidth of the Atlantic bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 74(suppl):S73.

    Article  Google Scholar 

  • Moore PWB, Hall RW, Friedl WA, Nachtigall PE (1984) The critical interval in dolphin echolocation: what is it? J Acoust Soc Am 76:314–317.

    Article  PubMed  CAS  Google Scholar 

  • Moore PWB, Pawloski DA, Dankeiwicz L (1995) Interaural time and intensity thresholds in the bottlenosed dolphin (Tursiops truncatus) In: Kastelein R, Thomas J, Nachtigall PE (eds) Sensory Systems of Aquatic Mammals. Woerden, Netherlands: De Spil, pp. 11–23.

    Google Scholar 

  • Nachtigall PE (1986) Vision audition and chemoreception in dolphins and other marine mammals. In: Schusterman RJ, Thomas JA, Wood FG (eds) Dolphin Cognition and Behavior: A Comparative Approach. New Jersey: Lawrence Erlbaum Associates, pp. 79–113.

    Google Scholar 

  • Nachtigall PE, Moore PWB (1988) Animal Sonar: Processes and Performance. New York: Plenum Press.

    Google Scholar 

  • Nachtigall PE, Au WWL, Pawloski JL, Moore PWB (1995) Risso’s dolphin (Grampus griseus) hearing thresholds in Kaneohe Bay, Hawaii. In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory Systems of Aquatic Mammals. Woerden, The Netherlands: DeSpil, pp. 49–53.

    Google Scholar 

  • Nelson DA (1994) Level-dependent critical bandwidth for phase discrimination. J Acoust Soc Am 95:1514–1524.

    Article  PubMed  CAS  Google Scholar 

  • Norris KS (1968) The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake ET (ed) Evolution and Environment. New Haven: Yale University Press, pp. 297–324.

    Google Scholar 

  • Norris KS, Presott JH, Asa-Dorian PV, Perkins P (1961) An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu). Biol Bull 120:163–176.

    Article  Google Scholar 

  • Plomp R, Bouman MA (1959) Relation between hearing threshold and duration for tone pulses. J Acoust Soc Am 31:749–758.

    Article  Google Scholar 

  • Popov VV, Klishin VO (1998) EEG study of hearing in the common dolphin Delphinus delphis. Aquat Mamm 24:13–21.

    Google Scholar 

  • Rayleigh, Lord (1907) Our perception of sound direction. Philosophical Magazine 13:214–232.

    Google Scholar 

  • Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise, Tursiops truncatus. J Exp Biol 63:569–585.

    PubMed  CAS  Google Scholar 

  • Richardson WJ, Greene CR, Malme CI, Thomson DH (1997) Marine Mammals and Noise. San Diego: Academic Press.

    Google Scholar 

  • Ridgway SH, Carder DA (1993) High-frequency hearing loss in old (25 + years old) male dolphins. J Acoust Soc Am 94:1830.

    Article  Google Scholar 

  • Ridgway SH, Carder DA (1997) Hearing deficits measured in some Tursiops truncatus and the discovery of a deaf/mute dolphin. J Acoust Soc Am 101:590–594.

    Article  PubMed  CAS  Google Scholar 

  • Roffler SK, Butler RA (1968) Factors that influence the localization of sound in the vertical plane. J Acoust Soc Am 43:1255–1259.

    Article  PubMed  CAS  Google Scholar 

  • Scharf B (1970) Critical bands. In: Tobias JV (ed) Foundations of Modern Auditory Theory, Vol. 1. New York: Academic Press, pp. 159–202.

    Google Scholar 

  • Schevill WE, Lawrence B (1953) High-frequency auditory response of a bottlenosed porpoise, Tursiops truncatus (Montagu). J Acoust Soc Am 25:1016–1017.

    Article  Google Scholar 

  • Schusterman RJ (1980) Behavioral methodology in echolocation by marine mammals. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum, pp. 11–41.

    Google Scholar 

  • Schusterman RJ, Barrett R, Moore PWB (1975) Detection of underwater signals by a California sea lion and a bottlenose porpoise: variation in the payoff matrix. J Acoust Soc Am 57:1526–1532.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Grinnell AD (1988) The performance of echolocation: acoustic images perceived by echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 353–386.

    Google Scholar 

  • Stevens SS (1957) Psychophysics. New York: John Wiley & Sons.

    Google Scholar 

  • Supin AY, Popov VV (1993) Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study. J Acoust Soc Am 93:3490–3495.

    Article  PubMed  Google Scholar 

  • Thomas J, Chun N, Au W, Pugh K (1988) Underwater audiogram of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 84:936–940.

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Pawloski JL, Au WWL (1990) Masked hearing abilities in a false killer whale (Pseudorca crassidens) In: Thomas J, Kastelein R (eds) Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 395–404.

    Google Scholar 

  • Thompson RKR, Herman LM (1975) Underwater frequency discrimination in the bottlenosed dolphin (1–140kHz) and the human (1–8 kHz). J Acoust Soc Am 57:943–948.

    Article  PubMed  CAS  Google Scholar 

  • Turner RN, Norris KS (1966) Discriminative echolocation in a porpoise. J Exp Anal Behav 9:535–544.

    Article  PubMed  CAS  Google Scholar 

  • Vel’min VA, Dubrovskiy NA (1975) On the analysis of pulsed sounds by dolphins. Doklady Akademy Nauka SSSR 225:470–473.

    CAS  Google Scholar 

  • Vel’min VA, Titov AA, Yurkevich LI (1975) Time summation pulses in the bot-tlenose dolphin. Morskiye Mlekopitayschchiye 6:12–1A.

    Google Scholar 

  • Wang D, Wang K, Ziao Y, Sheng G (1992) Auditory sensitivity of a Chinese river dolphin (Lipotes vexillifer). In: Thomas JA, Kastelein RA, Supin AY (eds) Marine Mammal Sensory Systems. New York: Plenum Press, pp. 213–221.

    Chapter  Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285.

    Article  Google Scholar 

  • Weir C, Jesteadt W, Green D (1976) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    Article  Google Scholar 

  • White MJ Jr, Norris J, Ljungblad D, Baron K, di Sciara G (1978) Auditory thresholds of two beluga whales (Delphinapterus leucas). HSWRI Tech Rep No 78-109. Hubbs Marine Research Institute, San Diego CA.

    Google Scholar 

  • Yost WA (1993) Overview: psychophysics. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer-Verlag, pp. 1–12.

    Chapter  Google Scholar 

  • Yost WA (1994) Fundamentals of Hearing. New York: Academic Press.

    Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical bandwidths in loudness summation. J Acoust Soc Am 29:548–557.

    Article  Google Scholar 

  • Zwislocki J (1960) Theory of temporal auditory summation. J Acoust Soc Am 32:1046–1060.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nachtigall, P.E., Lemonds, D.W., Roitblat, H.L. (2000). Psychoacoustic Studies of Dolphin and Whale Hearing. In: Au, W.W.L., Fay, R.R., Popper, A.N. (eds) Hearing by Whales and Dolphins. Springer Handbook of Auditory Research, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1150-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1150-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7024-9

  • Online ISBN: 978-1-4612-1150-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics