Cetacean Ears

  • Darlene R. Ketten
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 12)

Abstract

Whales and dolphins are majestic, elusive, charismatic creatures that couple exceptional grace with enormous power. These features may account for much of humanity’s enduring fascination with whales, but they are terrible reasons for studying their auditory systems. The principal reason whale ears are worth investigating is… Ginger Rogers. Ginger Rogers and Fred Astaire were a famous dance team. Mr. Astaire was renowned for his grace and agility. What people rarely note is that Ms. Rogers not only matched her partner step for step, she did it wearing a cumbersome gown, in high heels, and backwards. Just as Ginger kept pace with Fred but in a different orientation and with added burdens, whales hear as well as land mammals but in a different medium with special acoustic burdens.

Keywords

Foam Respiration Retina Trichechus Manatus Hunt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen JB, Neely ST (1992) Mircomechanical models of the cochlea. Physics Today 45(7):40–47.Google Scholar
  2. Au WWL (1990) Target detection in noise by echolocating dolphins. In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 203–216.Google Scholar
  3. Au WWL (1993) The Sonar of Dolphins. New York: Springer-Verlag.Google Scholar
  4. Boenninghaus G (1903) Das Ohr des Zahnwales zyugleich ein Beitrag zur Theorie der Schalleitung. Zool Gahrb (Anatomie) 17:189–360. (Not read in original.)Google Scholar
  5. Brill RL, Sevenich ML, Sullivan TJ, Sustman JD, Witt RE (1988) Behavioral evidence for hearing through the lower jaw by an echolocating dolphin, Tursiops truncatus. Mar Mamm Sci 4(3):223–230.Google Scholar
  6. Brill RL, Moore PWB, Dankiewicz LA, Ketten DR (1997) Evidence of hearing loss in an Atlantic bottlenose dolphin, Tursiops truncatus. J Acoust Soc Am 102(5):3101.Google Scholar
  7. Bruns V, Schmieszek ET (1980) Cochlear innervation in the greater horseshoe bat: demonstration of an acoustic fovea. Hear Res 3:27–3.PubMedGoogle Scholar
  8. Bullock TH, Grinnell AD, Ikezono E, Kameda K, Katsuki Y, Nomoto M, Sato O, Suga N, Yanagisawa K (1968) Electrophysiological studies of central auditory mechanisms in cetaceans. Z vergi Physiol 59:117–156.Google Scholar
  9. Dallos P (1970) Low-frequency auditory characteristics: species dependence. J Acoust Soc Am 48(2):489–499.PubMedGoogle Scholar
  10. Dawson WW (1980) The cetacean eye. In: Herman LM (ed) Cetacean Behavior: Mechanisms and Functions. New York: Wiley Interscience, pp. 54–99.Google Scholar
  11. de Boer E (1996) Mechanics of the cochlea: modeling efforts. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 258–317.Google Scholar
  12. Dudok van Heel WH (1962) Sound and Cetacea. Neth J Sea Res 1:407–507.Google Scholar
  13. Echteler SW, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 134–171.Google Scholar
  14. Edds PL (1982) Vocalizations of the blue whale, Balaenoptera musculus, in the St. Lawrence River. J Mamm 63:345–347.Google Scholar
  15. Edds PL (1988) Characteristics of finback, Balaenoptera physalus, vocalizations in the St. Lawrence Estuary. Bioacoustics 1:131–149.Google Scholar
  16. Edds-Walton PL (1997) Acoustic communication signals of mysticete whales. Bioacoustics 8:47–60.Google Scholar
  17. Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  18. Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–267.Google Scholar
  19. Firbas W (1972) Über anatomische Anpassungen des Hörorgans an die Aufnahme höherer Frequenzen. Monatszeitschrift Ohrenheilkd Laryngo-Rhinologie 106: 105–156.Google Scholar
  20. Fitzgerald JW (1999) The Larynx-Melon-Vestibular Lips (LMVL) model of the dolphin sonar II: the melon beam former. J Acoust Soc Am 105(2):4pAB7.Google Scholar
  21. Fleischer G (1976a) On bony microstructures in the dolphin cochlea, related to hearing. N Jahrbuch f Geologie u Paläontologie Abhandlungen 151:166–191.Google Scholar
  22. Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:1–70.Google Scholar
  23. Fletcher H (1940) Auditory patterns. Reviews of Modern Physics 12:47–65.Google Scholar
  24. Fraser F, Purves P (1954) Hearing in cetaceans. Bull Brit Mus Nat Hist 2:103–116.Google Scholar
  25. Fraser F, Purves P (1960) Hearing in cetaceans: evolution of the accessory air sacs in the structure and function of the outer and middle ear in recent cetaceans. Bull Brit Mus Nat Hist 7:1–140.Google Scholar
  26. Gacek RR, Rasmussen GL (1961) Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey. Anatomical Record 139:455.PubMedGoogle Scholar
  27. Gao G, Zhou K (1991) The number of fibers and range of fiber diameters in the cochlear nerve of three odontocete species. Can J Zool 69:2360–2364.Google Scholar
  28. Gao G, Zhou K (1992) Fiber analysis of the optic and cochlear nerves of small cetaceans. In: Thomas JA, Kastelein RA, Supin AY (eds) Marine Mammal Sensory Systems. New York: Plenum Press, pp. 39–52.Google Scholar
  29. Gao G, Zhou K (1995) Fiber analysis of the vestibular nerve of small cetaceans. In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory Systems of Aquatic Mammals. Woerden: DeSpil, pp. 447–453.Google Scholar
  30. Goodson AD, Klinowska M (1990) A proposed echolocation receptor for the bot-tlenose dolphin, Tursiops truncatus: modelling the receive directivity from tooth and lower jaw geometry. In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 255–268.Google Scholar
  31. Gray O (1951) An introduction to the study of the comparative anatomy of the labyrinth. J Laryng Otol 65:681–703.Google Scholar
  32. Graybiel A (1964) Vestibular sickness and some of its implications for space flight. In: Fields WS, Alford RR (eds) Neurological Aspects of Auditory and Vestibular Disorders. Springfield: Charles C. Thomas, pp. 248–270.Google Scholar
  33. Greenwood DG (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.Google Scholar
  34. Greenwood DG (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.PubMedGoogle Scholar
  35. Grinnell AD (1995) Hearing in bats: an overview. In: Fay RR, Popper AN (eds) Hearing by Bats. New York: Springer-Verlag, pp. 1–36.Google Scholar
  36. Heffner RS, Heffner HE (1980) Hearing in the elephant, Elephas maximus. Science 208:518–520.PubMedGoogle Scholar
  37. Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster D, Fay R, Popper A (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 691–715.Google Scholar
  38. Heffner RS, Masterton RB (1990) Sound localization in mammals: brain-stem mechanisms. In: Berkley MA, Stebbins WC (eds) Comparative Perception, Vol. 1. New York: John Wiley and Sons, pp. 285–314.Google Scholar
  39. Hinchcliffe R, Pye A (1968) The cochlea in Chiroptera: a quantitative approach. Int Audiol 7:259–266.Google Scholar
  40. Hinchcliffe R, Pye A (1969) Variations in the middle ear of the Mammalia. J Zool 157:277–288.Google Scholar
  41. Hyrtl J (1845) Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Prague: Ehrlich, pp. 91–130.Google Scholar
  42. Jansen J, Jansen JKS (1969) The nervous system of Cetacea. In: Andersen HT (ed) The Biology of Marine Mammals. New York: Academic Press, pp. 175–252.Google Scholar
  43. Johnson CS (1968) Masked tonal thresholds in the bottlenosed porpoise. J Acoust Soc Am 44:965–967.PubMedGoogle Scholar
  44. Kamminga C (1988) Echolocation signal types of odontocetes. In: Nachtigall PE, Moore PWB (eds) Animal Sonar Processes and Performance. New York: Plenum Press, pp. 9–22.Google Scholar
  45. Kellogg WN (1959) Auditory perception of submerged objects by porpoises. J Acoust Soc Am 31:1–6.Google Scholar
  46. Ketten DR (1984) Correlations of morphology with frequency for odontocete cochlea: systematics and topology. Ph.D. Thesis, The Johns Hopkins University, Baltimore, MD.Google Scholar
  47. Ketten DR (1992) The marine mammal ear: specializations for aquatic audition and echolocation. In: Webster D, Fay R, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 717–754.Google Scholar
  48. Ketten DR (1992) Functional analyses of whale ears: adaptations for underwater hearing, I.E.E.E Underwater Acoust. 1:264–270.Google Scholar
  49. Ketten DR (1995) Estimates of blast injury and acoustic trauma zones for marine mammals from underwater explosions. In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory Systems of Aquatic Mammals. Woerden: De Spil Publishers, pp. 391–408.Google Scholar
  50. Ketten DR (1998a) Dolphin and bat sonar: convergence, divergence, or parallelism. Fourth International Biosonar Conferenece, pp. 1:43.Google Scholar
  51. Ketten DR (1998b) Marine mammal hearing and acoustic trauma: basic mechanisms, marine adaptations and beaked whale anomalies. In: D’Amico A, Verboom W (eds) Report of the Bioacoustics Panel. La Spezia: NATO/SACLANT, pp. 2–21, 2-63-78.Google Scholar
  52. Ketten DR, Wartzok D (1990) Three-dimensional reconstructions of the dolphin cochlea. In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 81–105.Google Scholar
  53. Ketten DR, Moore PWB, Dankiewicz LA, Van Bonn W (1997) The slippery slope of a Johnsonian ear: natural variability versus natural loss. J Acoust Soc Am 102(5):3101.Google Scholar
  54. Ketten DR, Skinner M, Wang G, Vannier M, Gates G, Neely G (1998) In vivo measures of cochlear length and insertion depths of Nucleus® cochlear implant electrode arrays. Ann Otol Rhinol Laryngol 107(ll):l–16.Google Scholar
  55. Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Fay RR, Popper AN (eds) Hearing by Bats. New York: Springer-Verlag, pp. 191–234.Google Scholar
  56. Lees S, Hanson DB, Page EA (1996) Some acoustical properties of the otic bones of a fin whale. J Acoust Soc Am 99(4):2421–2427.PubMedGoogle Scholar
  57. Manley GA (1972) A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution 26:608–621.Google Scholar
  58. Mass AM, Supin AY (1989) Distribution of ganglion cells in the retina of an Amazon river dolphin, Inia geoffrensis. Aquat Mamm 15:49–56.Google Scholar
  59. McCormick JG, Weaver EG, Palin G, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428.PubMedGoogle Scholar
  60. McCormick JG, Wever EG, Ridgway SH, Palin J (1980) Sound reception in the porpoise as it relates to echolocation. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 449–461.Google Scholar
  61. Meng J, Shoshani J, Ketten D (1997) Evolutionary evidence for infrasonic sound and hearing in elephants. Society for Vertebrate Paleontology, New York: NY.Google Scholar
  62. Miller GS (1923) The telescoping of the cetacean skull. Smithsonian Misc Coll 76:1–67.Google Scholar
  63. Møhl B, Andersen S (1973) Echolocation: high-frequency component in the click of the harbor porpoise, Phocoena phocoena L. J Acoust Soc Am 57:1368–1372.Google Scholar
  64. Moore PWB, Pawloski DA, Dankiewicz L (1995) Interaural time and intensity difference thresholds in the bottlenose dolphin Tursiops truncatus. In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory Systems of Aquatic Mammals. Woerden: DeSpil, pp. 11–25.Google Scholar
  65. Morgane PJ, Jacobs JS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional Anatomy of Marine Mammals, Vol. 1. New York: Academic Press, pp. 117–224.Google Scholar
  66. Nadol JB (1988) Quantification of human spiral ganglion cells by serial section reconstruction and segmental density estimates. Am J Otolaryngol 9: 47–51.PubMedGoogle Scholar
  67. Norris J, Leatherwood K (1981) Hearing in the bowhead whale, Balaena mysticetus, as estimated by cochlear morphology. Hubbs Sea World Res Inst Tech Rep No 81-132:15–1 to 15–49.Google Scholar
  68. Norris KS (1968) The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake ET (ed) Evolution and Environment. New Haven: Yale University Press, pp. 297–324.Google Scholar
  69. Norris KS (1969) The echolocation of marine mammals In: Andersen HJ (ed) The Biology of Marine Mammals. New York: Academic Press, pp. 391–423.Google Scholar
  70. Norris KS, Harvey GW (1974) Sound transmission in the porpoise head. J Acoust Soc Am 56:659–664.PubMedGoogle Scholar
  71. Norris KS, Harvey GW, Burzell LA, Krishna Kartha DK (1972) Sound production in the freshwater porpoise Sotalia cf fluviatilis Gervais and Deville and Inia geoffrensis Blainville in the Rio Negro Brazil. Invest Cetacea 4:251–262.Google Scholar
  72. Nowak RM (1991) Mammals of the World, Vol. 2. 5th ed. Baltimore: The Johns Hopkins University Press.Google Scholar
  73. O’Connell CE, Anason BT, Hart LA (1997) Seismic transmission for elephant vocalizations and movement. J Acoust Soc Am 102(5):3124.Google Scholar
  74. Oelschläger HA (1986) Comparative morphology and evolution of the otic region in toothed whales (Cetacea: Mammalia). Am J Anat 177:353–368.PubMedGoogle Scholar
  75. Payne KB, Langbauer WJ Jr, Thomas EM (1986) Infrasonic calls of the Asian elephant, Elephas maximus. Behav Ecol Sociobiol 18: 297–3Google Scholar
  76. Pilleri GC, Kraus C, Gihr M (1987) The organ of hearing in cetaceans 1: recent species. Invest Cetacea 20:43–177.Google Scholar
  77. Popov VV, Supin AY (1990) Localization of the acoustic window at the dolphin’s head. In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 417–426.Google Scholar
  78. Popov VV, Ladygina TF, Supin AY (1986) Evoked potentials of the auditory cortex of the porpoise Phocoena phocoena. J Comp Physiol 158:705–711.Google Scholar
  79. Popper AN (1980) Sound emission and detection by delphinids. In: Herman LM (ed) Cetacean Behavior: Mechanisms and Functions. New York: John Wiley and Sons, pp. 1–52.Google Scholar
  80. Pye A (1972) Variations in the structure of the ear in different mammalian species. Sound 6:14–18.Google Scholar
  81. Renaud DL, Popper AN (1975) Sound localization by the bottlenose porpoise Tursiops truncatus. J Exp Biol 63:569–585.PubMedGoogle Scholar
  82. Reuter T, Nummela S, Hemilä S (1998) Elephant hearing. J Acoust Soc Am 104(2):1122–1123.PubMedGoogle Scholar
  83. Reysenbach de Haan FW (1956) Hearing in whales. Acta Otolaryngol Suppl 134:1–114.Google Scholar
  84. Richardson WJ, Greene CR Jr, Malme CI, Thomson DH (1995) Marine Mammals and Noise. New York: Academic Press.Google Scholar
  85. Ridgway SH, Carder D (1997) Hearing deficits measured in some Tursiops truncatus, and discovery of a deaf/mute dolphin. J Acoust Soc Am 101(l):590–593.PubMedGoogle Scholar
  86. Ridgway SH, Bullock TH, Carder DA, Seeley RL, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. Proc Natl Acad Sci 78(3):1943–1947.PubMedGoogle Scholar
  87. Ridgway S, Carder D, Smith R, Kamolnick T, Elsberry W (1997) First audiogram for marine mammals in the open ocean and at depth: hearing and whistling by two white whales down to 30 atmospheres. J Acoust Soc Am 101(5):3136.Google Scholar
  88. Rosowski JJ (1994) Outer and middle ears. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag, pp. 172–247.Google Scholar
  89. Sales G, Pye D (1974) Ultrasonic Communication by Animals. New York: John Wiley and Sons.Google Scholar
  90. Schevill WE (1964) Underwater sounds of cetaceans. In: Tavolga WN (ed) Marine Bio-Acoustics. New York: Pergamon Press, pp. 307–316.Google Scholar
  91. Schuknecht HF (1993) Pathology of the Ear. 2nd ed. Philadelphia: Lea and Febiger.Google Scholar
  92. Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer, pp. 44–129.Google Scholar
  93. Solntseva GN (1990) Formation of an adaptive structure of the peripheral part of the auditory analyzer in aquatic, echo-locating mammals during ontogenesis. In: Thomas JA, Kastelein RA (eds) Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 363–384.Google Scholar
  94. Suga N (1983) Neural representation of bisonar (sic) information in the auditory cortex of the mustached bat. J Acoust Soc Am 74(S1):31.Google Scholar
  95. Supin AY, Popov VV (1990) Frequency selectivity of the auditory system of the bot-tlenosed dolphin, Tursiops truncatus. In: Thomas JA, Kastelein RA (eds) Sensory Abilites of Cetaceans: Laboratory and Field Evidence. New York: Plenum Press, pp. 385–393.Google Scholar
  96. Supin AY, Popov VV (1993) Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study. J Acoust Soc Am 93:3490–3495.PubMedGoogle Scholar
  97. Thewissen H (1998) The Emergence of Whales. New York: Plenum Press.Google Scholar
  98. Tremel DP, Thomas JA, Ramirez KT, Dye GS, Bachman WA, Orban AN, Grimm KK (1998) Underwater hearing sensitivity of a Pacific white-sided dolphin, Lagenorhynchus obliquidens. Aquat Mamm 24(2):63–69.Google Scholar
  99. van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology, Vol. 1. New York: Academic Press, pp. 1–41.Google Scholar
  100. Varanasi U, Malins DG (1971) Unique lipids of the porpoise Tursiops gilli: differences in triacyl glycerols and wax esters of acoustic (mandibular canal and melon) and blubber tissues. Biochem Biophys Acta 231:415.PubMedGoogle Scholar
  101. Vater M (1988a) Light microscopic observations on cochlear development in horseshoe bats Rhinolophus rouxii. In: Nachtigall PE, Moore PWB (eds) Animal Sonar Processes and Performance. New York: Plenum Press, pp. 341–345.Google Scholar
  102. Vater M (1988b) Cochlear physiology and anatomy in bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar Processes and Performance. New York: Plenum Press, pp. 225–241.Google Scholar
  103. von Békésy G (1960) Experiments in Hearing, Wever EG (trans). New York: McGraw-Hill Book Company.Google Scholar
  104. Wangeman P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer, pp. 130–185.Google Scholar
  105. Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mamm Sci 1:219–260.Google Scholar
  106. Watkins WA, Tyack P, Moore KE, Bird JE (1987) The 20Hz signals of finback whales, Balaenoptera physalus. J Acoust Soc Am 82:1901–1912.PubMedGoogle Scholar
  107. Webster DB, Webster M (1975) Auditory systems of Heteromyidae: function, morphology and evolution of the middle ear. J Morph 146:343–376.PubMedGoogle Scholar
  108. West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101.PubMedGoogle Scholar
  109. Wever EG, McCormick JG, Palin J, Ridgway SH (1971a) The cochlea of the dolphin, Tursiops truncatus: general morphology. Proc Nat Acad Sci USA 68:2381–2385.PubMedGoogle Scholar
  110. Wever EG, McCormick JG, Palin J, Ridgway SH (1971b) The cochlea of the dolphin, Tursiops truncatus: the basilar membrane. Proc Nat Acad Sci USA 68:2708–2711.PubMedGoogle Scholar
  111. Wever EG, McCormick JG, Palin J, Ridgway SH (1971c) The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells. Proc Nat Acad Sci USA 68:2908–2912.PubMedGoogle Scholar
  112. Wever EG, McCormick JG, Palin J, Ridgway SH (1972) Cochlear structure in the dolphin, Lagenorhynchus obliquidens. Proc Nat Acad Sci, USA 69:657–661.Google Scholar
  113. Yamada M, Yoshizaki F (1959) Osseous labyrinth of Cetacea. Sci Rep Whale Res Inst 14:291–304.Google Scholar
  114. Yeowart NS (1976) Thresholds of hearing and loudness for very low frequencies. In: Tempest W (ed) Infrasound and Low Frequency Vibration. London: Academic Press, pp. 37–64.Google Scholar
  115. Yost WA (1994) Fundamentals of Hearing: An Introduction. 3rd ed. New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Darlene R. Ketten

There are no affiliations available

Personalised recommendations