Quasilinear Singular Perturbation Problems

  • K. W. Chang
  • F. A. Howes
Part of the Applied Mathematical Sciences book series (AMS, volume 56)

Abstract

We consider now the singularly perturbed quasilinear Dirichlet problem
$$\begin{gathered} \varepsilon y''{\text{ }} = {\text{ f}}({\text{t}},y)y'{\text{ }} + {\text{ g(t}},y{\text{) }} \equiv {\text{ F}}({\text{t}},y,y'),{\text{ a }} < {\text{ t }} < {\text{ b}}, \hfill \\ y({\text{a}},\varepsilon ){\text{ }} = {\text{A}},{\text{ }}y({\text{b}},\varepsilon ){\text{ }} = {\text{B}}. \hfill \\ \end{gathered} $$
(DP2)

Keywords

uRea Vasil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • K. W. Chang
    • 1
  • F. A. Howes
    • 2
  1. 1.Department of MathematicsUniversity of CalgaryCalgaryCanada
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations