Sedimentary Structures and Bedding

  • F. J. Pettijohn
  • Paul Edwin Potter
  • Raymond Siever


Like texture and composition, sedimentary structures and bedding are inherent in sedimentation. Both are made visible by variations in grain size and to a lesser extent by mineralogy (Fig. 4-1). Because the great majority of structures can be seen with the naked eye, their study is as old as geology itself and, therefore, most of what we know has arisen from observation of ancient sediments. However, modern sediments and flume experiments have also contributed significantly to the study and understanding of structures, as we will see in Chap. 8. Structures have been used (1) as guides to determine the agent or environment of deposition, (2) as guides to stratigraphic order, by determination of top and bottom, (3) to map paleocurrent systems, (4) as indices of flow conditions, and (5) to assess chemical changes after deposition.


Sedimentary Structure Trace Fossil Sand Wave Deformational Structure Ripple Mark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J.R.L.: The classification of cross-stratified units with notes on their origin. Sedimentology 2, 93–114 (1963).Google Scholar
  2. Allen, J.R.L.: On bed forms and paleocurrents. Sedimentology 6, 153–190 (1966).Google Scholar
  3. Allen, J.R.L.: Current ripples, 433 pp. Amsterdam: North Holland Publ. Co. 1969.Google Scholar
  4. Allen, J.R.L.: Sedimentary structures: Their character and physical basis, 1593 pp. (Developments in Sedimentology, Vol. 30A). Amsterdam—New York: Elsevier Scientific Pub. Co. 1982a.Google Scholar
  5. Allen, J.R.L.: Sedimentary structures: Their character and physical basis, 2663 pp. (Developments in Sedimentology, Vol. 30B). Amsterdam—New York: Elsevier Scientific Pub. Co. 1982b.Google Scholar
  6. Beutner, E.C.: Did the worm turn? Deformed burrow as a slump indicator. Jour. Sed. Petrology 45, 212–214 (1975).Google Scholar
  7. Bokman, J.W.: Suggested use of bed-thickness measurements in stratigraphic descriptions. Jour. Sed. Petrology 27, 333–335 (1957).Google Scholar
  8. Botvinkina, L.N.: Methodicheskoe rukovodstvo po i zucheniiu stoistotis (Manual on the methods of studying bedding). Akad. Nauk, USSR Geol. Inst. Trans. 119, 253 pp. (1965).Google Scholar
  9. Bradshaw, M.A.: Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica. New Zealand Jour. Geol. Geophysics 24, 615–652 (1981).Google Scholar
  10. Bucher, W.H.: On ripples and related sedimentary surface forms and their paleogeographic interpretation. Am. Jour. Sci. (ser. 4) 47, 149–210, 241–269 (1919).Google Scholar
  11. Campbell, C.V.: Lamina, laminaset bed, and bedset. Sedimentology 8, 7–26 (1967).Google Scholar
  12. Cant, Douglas J.: Development of a facies model for sandy braided river sedimentation: Comparison of the South Saskatchewan River and the Battery Point Formation. In: Miall, A.D. (Ed.): Fluvial sedimentology. Canadian Soc. Petroleum Geologists, Mem. 5, 627–639, 1978.Google Scholar
  13. Chowdhuri, K.R., and Reineck, H.-E.: Primary sedimentary structures and their sequence in the shoreface barrier island Wangerooge (North Sea). Senckenbergiana Marit. 10, 15–29 (1978).Google Scholar
  14. Coleman, James M.: Brahmaputra River: Channel processes and sedimentation. Sedimentology, Spec. Issue 3, 131–239 (1969).Google Scholar
  15. Collinson, J.D., and Thompson, D.B.: Sedimentary structures, 194 pp. London: George Allen and Un-win, Ltd. 1982.Google Scholar
  16. Corbett, K.D.: Open-cast slump sheets and their relationship to sandstone beds in an Upper Cambrian flysch sequence, Tasmania. Jour. Sed. Petrology 43, 147–159 (1973).Google Scholar
  17. Conybeare, C.E.B., and Crook, K.A.W.: Manual of sedimentary structures. Australian Dept. Natl. Development. Bur. Min. Res., Geol., and Geophysics, Bull. 102, 327 pp. (1968).Google Scholar
  18. Crimes, T.P. (Ed.): Trace fossils, Vol. 2, 351 pp. Liverpool: Seel House Press 1976 (Geol. Jour. Spec. Issue 9).Google Scholar
  19. Crimes, T.P., and Crossley, J.D.: Inter-turbidite bottom current orientation from trace fossils with an example from the Silurian flysch of Wales. Jour. Sed. Petrology 50, 821–830 (1980).Google Scholar
  20. Crimes, T.P., and Harper, J.C. (Eds.): Trace fossils, 547 pp. Liverpool: Seel House Press 1970 (Geol. Jour. Spec. Issue 3).Google Scholar
  21. Crowell, J.C.; Hope, R.A.; Kahle, J.E.; Ovenshine, A.T.; and Sams, R.H.: Deep-water sedimentary structures Pliocene Pico Formation, Santa Paula Creek, Ventura Basin, California. California Div. Mines and Geology Spec. Rept. 89, 40 pp. (1966).Google Scholar
  22. Dalrymple, R.W.: Morphology and internal structure of sandwaves in the Bay of Fundy. Sedimentology 31, 365–382 (1984).Google Scholar
  23. Davidson-Arnott, R.G.D., and Greenwood, B.: Facies relationships on a barred coast, Kovchiboyquac Bay, New Brunswick, Canada. In: Davis, R.A., Jr., and Ethington, R.L. (Eds.): Beach and nearshore sedimentation. Soc. Econ. Paleon. Mineral. Spec. Pub. 24, 149–168 (1976).Google Scholar
  24. Dalziel, I.W.D., and Dott, R.H., Jr.: Geology of the Baraboo district. Wisconsin Geol. Nat. History Survey Inf. Circ. 14, 164 pp. (1970).Google Scholar
  25. Dean, W.E., Jr., and Anderson, R.Y.: Correlation of turbidite strata in the Pennsylvanian Haymond Formation, Marathon Region, Texas. Jour. Geology, 75, 59–75 (1967).Google Scholar
  26. DeCelles, P.G.; Lanford, R.P.; and Schwartz, R.K.: Two new methods of paleocurrent determination from trough cross-stratification. Jour. Sed. Petrology 53. 629–642 (1983).Google Scholar
  27. Dimitrijevié, M.N.; Dimitrijevi, M.D.; and Rado-sevie, B.: Sedimentne teksture u turbiditima. Zavod Geoloska Geofizicka Istrazivanja 16, 70 pp. (1967).Google Scholar
  28. Doe, T.W., and Dott, R.H., Jr.: Genetic significance of deformed cross bedding—with examples from the Navajo and Weber Sandstones of Utah. Jour. Sed. Petrology 50, 793–812 (1980).Google Scholar
  29. Dörjes, J.: Sedimentologische und faunistische Untersuchungen an Watten in Taiwan. II. Faunistische und akutopaläontologische Studien. Senckenbergiana Marit. 10, 117–143 (1978).Google Scholar
  30. Dzulynski, S., and Sanders, J.E.: Sedimentary features of flysch and greywackes, 300 pp. Developments in Sedimentology, Vol. 7. Amsterdam: Elsevier Scientific Pub. Co. 1965.Google Scholar
  31. Dzulynski, S., and Walton, E.K.: Current marks on firm mud bottems. Connecticut Acad. Art and Sci. Trans. 42, 57–96 (1962).Google Scholar
  32. Farrow, G.F.: Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England: Palaeogeog. Paleoclimatol. Palaeoecol. 2, 103–151 (1966).Google Scholar
  33. Farrow, G.; Scoffin, T.; Brown, B.; and Cucci, M.: An underwater television survey of facies variation on the inner Scottish shelf between Colonsay, Islay and Jura. Scottish Jour. Geology 15, 13–29 (1979).Google Scholar
  34. Freeman, T., and Pierce, K.: Field statistical assessment of cross-bed data. Jour. Sed. Petrology 49, 624–625 (1979).Google Scholar
  35. Frey, Robert W. (Ed.): The study of trace fossils, 562 pp. New York: Springer-Verlag, 1975.Google Scholar
  36. Frey, R.W., and Pemberton, S.G.: Biogenic structures in outcrops and cores 1. Approaches to ichnology. Bull. Canadian Petroleum Geology 33, 72115 (1985).Google Scholar
  37. Gall, J.C.: Environments sédimentaires anciens et milieux de vie, 219 pp. Paris: Doin Editeurs 1976.Google Scholar
  38. Glennie, K.: Desert sedimentary environments. Developments in Sedimentology, Vol. 14, 222 pp. Amsterdam–New York: Elsevier Pub. Co. 1970.Google Scholar
  39. Gregory, M.R.: Sedimentary features and penecontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, North Auckland, New Zealand. New Zealand Jour. Geol. Geophysics 12, 248–282 (1969).Google Scholar
  40. Griffiths, J.C.: Measurement of the properties of sediments. Jour. Geology 69, 487–498 (1961).Google Scholar
  41. Grumbt, Eberhard: Beziehungen zwischen Korngrösse, Schichtung, Materialbestand und anderen sedimentologischen Merkmalen in feinklastischen Sedimenten. Geologie (Berlin) 18, 151–167 (1969).Google Scholar
  42. Gubler, Y.; Bugnicourt, D.; Faber, S.; Kubier, B.; and Nyssen, R.: Essai de nomenclature et caractérisation des principales structures sédimentaires, 291 pp. Paris: Editions Technip 1966.Google Scholar
  43. Hall, James: Remarks upon casts of mud furrows, wave lines, and other markings upon rocks of the New York System. Assoc. Am. Geol. Rept. [1941], 422–432 (1843).Google Scholar
  44. Hamblin, W.K.: Internal structures of “homoge-neous” sandstones. Kansas Geol. Survey Bull. 175, 568–582 (1965).Google Scholar
  45. Hamblin, A.P., and Walker, R.G.: Storm-dominated shallow marine deposits: The Fernie–Kootney (Jurassic) transition, southern Rocky Mountains. Canadian Jour. Earth Sci. 16, 1673–1690 (1979).Google Scholar
  46. Harms, J.C.; Southard, J.B.; and Walker, R.G.: Structures and sequences in clastic rocks. Soc. Econ. Paleon. Mineral. Short Course no. 9 (1982).Google Scholar
  47. Henderson, John B.: Sedimentology of the Archean Yellowknife Supergroup at Yellowknife, District of Mackenzie. Geol. Survey Canada Bull. 246, 62 pp. (1975).Google Scholar
  48. Hesse, Reinhard: X. Soft x-radiographs of sliced piston cores from the Japan and southern Kurile Trench and slope areas. In: Honza, E. (Ed.): Geological investigations of Japan and southern Kurile Trench and slope areas GH 76–2 Cruise, April–June 1976, pp. 86–108. Geol. Survey Japan Cruise Rept. 7 (1977).Google Scholar
  49. Hill, G.W., and Hunter, R.E.: Interaction of biological and geological processes in the beach and nearshore environments, northern Padre Island, Texas. In: Davis, R.A., Jr., and Ethington, R.L. (Eds.): Beach and nearshore sedimentation, pp. 169–187. Soc. Econ. Paleon. Mineral. Spec. Pub. 24 (1976).Google Scholar
  50. Howard, J.D.: Patterns of sediment dispersal in the Fountain Formation of Colorado. Mountain Geologist 3, 147–153 (1966).Google Scholar
  51. Howard, J.D., and Frey, R.W.: Estuaries of the Georgia Coast, U.S.A.: Sedimentology and biology. II. Regional animal–sediment characteristics of Georgia estuaries. Senckenbergiana Marit. 7, 33–103 (1975).Google Scholar
  52. Howard, J.D.; Elders, C.A.; and Heinbokel, J.F.: Estuaries of the Georgia coast, U.S.A.: Sedimentology and biology. V. Animal–sediment relationships in estuarine point bar deposits, Ogeechee River-Ossabaw Sound, Georgia. Senckenbergiana Marit. 7, 181–203 (1975).Google Scholar
  53. Hunter, R.E.: Terminology of cross-stratified sedimentary layers and climbing ripple structures. Jour. Sed. Petrology 47, 697–706 (1977).Google Scholar
  54. Jago, C.F.: Contemporary accumulation of marine sand in a macrotidal estuary, southwest Wales. Sedimentary Geology 26, 21–49 (1980).Google Scholar
  55. Johnson, A.M., and Rodine, J.R.: Debris flow. In: Brunsden, D., and Prior, D.B. (Eds.): Slope instability, pp. 257–361. New York: John Wiley and Sons 1984.Google Scholar
  56. Jones, G.P.: Deformed cross-stratification in Cretaceous Bima sandstone, Nigeria. Jour. Sed. Petrology 32, 231–239 (1962).Google Scholar
  57. Jones, T.A.: Estimation and testing procedures for circular normally distributed data. Office Naval Research, ONR Task No. 388–078, Contract Nonr1228 (36), 61 pp. (1967).Google Scholar
  58. Jones, T.A., and James, W.R.: Analysis of bimodal orientation data. Mathematical Geology 1, 129–135 (1969).Google Scholar
  59. Jopling, A.V., and Walker, R.G.: Morphology and origin of ripple-drift lamination, with examples from the Pleistocene of Massachusetts. Jour. Sed. Petrology 38, 971–984 (1968).Google Scholar
  60. Kelley, V.C.: Thickness of strata. Jour. Sed. Petrology 26. 289–300 (1956).Google Scholar
  61. Khabakov, A.V. (Ed.): Atlas tekstur: struktur osadochyhk gornykh porod (An atlas of textures and structures of sedimentary rocks, pt. 1, clastic and argillaceous rocks), 578 pp. Moscow: VSEGEI 1962.Google Scholar
  62. Kindle, E.M.: Recent and fossil ripple mark. Canada Geol. Survey Mus. Bull. 25, 1–56 (1917).Google Scholar
  63. Kitchell, J.A.; Kitchell, J.K.; Johnson, G.L.; and Hunkins, K.L.: Abyssal traces and megafauna: Comparison of productivity. diversity and density in the Arctic and Antarctic. Paleobiology 4, 171–180 (1978).Google Scholar
  64. Klein, George de Vries: Depositional and dispersal dynamics of intertidal sand bars. Jour. Sed. Petrology 40, 1095–1127 (1970).Google Scholar
  65. Ksiazkiewicz, Marian: Ichnoskamienal’osci z osadów fliszowych Karpat Polskich (Trace fossils in the flysch of the Polish Carpathians). Palaeontologia Polonica 36, 208 pp. (1977).Google Scholar
  66. Kuenen, Ph.H.: Slumping in the Carboniferous rocks of Pembrokeshire: Geol. Soc. London Quart. Jour. 104, 365–385 (1949).Google Scholar
  67. Kuenen, Ph.H.: Graded bedding, with observations on Lower Paleozoic rocks of Britain. Koninkl. Nederlandse Akad. Wetensch. Afd. Nat. Verh., 1st Ser., 20, 1–47 (1953).Google Scholar
  68. Kuenen, Ph.H.: Sole markings of graded graywacke beds. Jour. Geology 65. 231–258 (1957).Google Scholar
  69. Kuenen, Ph.H.: Experiments in geology. Glasgow Geol. Soc. Trans. 23, 1–28 (1958).Google Scholar
  70. Lindholm, R.C.: Utilization of programmable calculators in sedimentology. Jour. Sed. Petrology 49. 615–620 (1979).Google Scholar
  71. McBride, E.F., and Yeakel, L.S.: Relationship between parting lineation and rock fabric. Jour. Sed. Petrology 33, 779–782 (1963).Google Scholar
  72. McCabe, P.J., and Jones, C.M.: Formation of reactivation surfaces within superimposed deltas and bedforms. Jour. Sed. Petrology 47, 707–715 (1977).Google Scholar
  73. McGowen, J.H.: Gum Hollow fan delta Nueces Bay. Texas. Texas Bur. Econ. Geol., Rept. Invs. 69. 91 pp. (1970).Google Scholar
  74. McKee, E.D., and Bigarella, J.J.: Sedimentary structures in dunes, U.S. Geol. Survey Prof. Paper 1052E, 83–136 (1979).Google Scholar
  75. McKee, E.D., and Wier, G.W.: Terminology of stratification and cross-stratification. Geol. Soc. America Bull. 64, 381–390 (1953).Google Scholar
  76. Miall, A.D.: Paleocurrent analysis in alluvial sediments: A discussion of directional variance and vector magnitude: Jour. Sed. Petrology 44, 1174–1185 (1974).Google Scholar
  77. Miall, A.D. (Ed.): Fluvial sedimentology. Canadian Soc. Petroleum Geologists Mem. 5, 857 pp. (1978).Google Scholar
  78. Nagahama, H.; Ota, Ryokei; and Aoyama, H.: Dish structure newly found in the Nichinan Group. Kyushu, Japan. Bull. Geol. Survey Japan 26. 217–225 (1975).Google Scholar
  79. Park, J.M.: Paleocurrent analysis of sedimentary crossbed data with graphic output using three integrated computer programs. Mathematical Geology 6, 353–372 (1974).Google Scholar
  80. Pettijohn, F.J., and Potter, P.E.: Atlas and glossary of primary sedimentary structures. 117 pl., 370 pp. New York: Springer 1964.Google Scholar
  81. Picard, M. Dane, and High, L.R., Jr.: Sedimentary structures of ephemeral streams, 233 pp. Amsterdam-New York: Elsevier Scientific Pub. Co. 1973. (Developments in Sedimentology l7).Google Scholar
  82. Potter, P.E., and Pettijohn, F.J.: Paleocurrents and basin analysis, revised and up-dated 2nd ed., 425 pp. Berlin-Göttingen-Heidelberg: Springer 1977.Google Scholar
  83. Potter, P.E.; DeReamer, J.; Jackson, D.; and Maynard, J.B.: Lithologic and environmental atlas of Berea Sandstone (Mississippian) in the Appalachian Basin. Appalachian Geol. Soc. Spec. Pub. 1. 158 pp. (1984).Google Scholar
  84. Ramsey, J.G.: The effects of folding upon the orientation of sedimentation structures. Jour. Geology 69, 84–1001,1961).Google Scholar
  85. Rautman, C.A., and Dott, R.H., Jr.: Dish structures formed by fluid escape in Jurassic shallow marine sandstones. Jour. Sed. Petrology 47. 101–106 (1977).Google Scholar
  86. Reading, H.G. (Ed.): Sedimentary environments and facies, 2nd Ed., 680 pp. Oxford: Oxford Univ. Press 1985.Google Scholar
  87. Reineck, Hans-Erich: Primargefüge, Bioturbation und Makrofauna als Indikatoren des Sandversatzes in Seegebeit vor Norderney (Nordsee). 1. Zonierung von Primärgefügen und Bioturbation. Senckenbergiana Marit. 8. 155–169 (1976).Google Scholar
  88. Reineck, H.E.: Layered sediments of tidal flats, beaches and shelf bottoms of the North Sea. In: Lauff, G.H. (Ed.): Estuaries. Am. Assoc. Adv. Sci. Spec. Pub. 83, 191–206 (1967).Google Scholar
  89. Reineck, H.E., and Singh, I.B.: Depositional sedimentary environments, 2nd Ed., 549 pp. BerlinHeidelberg-New York: Springer-Verlag, 1980.Google Scholar
  90. Reineck, H.E., and Wunderlich, F.: Classification and origin of flaser and lenticular bedding. Sedimentology 11, 99–104 (1968).Google Scholar
  91. Reineck, H.E.; Dörjes, J.; Gadow, S.; and Hertweck, G.: Sedimentologie, Faunenzonierung und Faziesabfolge vor der Ostküste der inneren Deutschen Bucht. Senckenbergiana Lethaea 49. 261–309 (1968).Google Scholar
  92. Ricci-Lucchi, F.: Sedimentografia. 288 pp. Bologna: Zanichelli, 1970.Google Scholar
  93. Rigby, J. Keith. and Hamblin, Wm. Kenneth (Eds.): Recognition of ancient sedimentary environments. Soc. Econ. Paleon. Mineral. Spec. Pub. 16, 340 pp. (1972).Google Scholar
  94. Scott, K.M.: Sedimentology and dispersal pattern of a Cretaceous flysch sequence. Patagonian Andes, Southern Chile. Am. Assoc. Petroleum Geologists Bull. 50, 72–107 (1966).Google Scholar
  95. Seeland, D.A.: Relationships between early Tertiary sedimentation patterns and uranium mineralization in the Powder River Basin, Wyoming. In: Laudon, R.B. (Ed.): Geology and energy resources of the Powder River Basin. 28th Ann. Field Conference Guidebook, pp. 53–64. Casper: Wyoming Geol. Assoc. 1976.Google Scholar
  96. Seilacher, Adolf: Die geologische Bedeutung fossiler Lebensspuren. Zeitschr. deutsch. geol. Gesell. 10, 214–227 (1953).Google Scholar
  97. Seilacher, Adolf: Studien zur Palichnologie 1. Uber die Methoden der Palichnologie. Neues Jahrb. Geologie u. Palaontologie Abh. 96, 421–452 (1955).Google Scholar
  98. Seilacher, Adolf: Kaledonischer Unterbau der Irakiden. Neues Jahrb. Geologie u. Palaontologie Mh. 196, 527–542 (1963).Google Scholar
  99. Seilacher, Adolf: Biogenic sedimentary structures. In: Imbrie, John, and Newell, Norman (Eds.): Approaches to paleoecology, pp. 296–316. New York: John Wiley and Sons 1964.Google Scholar
  100. Shakesby, R.A.: The application of trend surface analysis to directional data. Geol. Mag. 118, 39–48 (1981).Google Scholar
  101. Shawa, Monzer S.: Use of sedimentary structures for recognition of clastic environments, 2nd Ed., 66 pp. Calgary: Canadian Soc. Petroleum Geologists 1979.Google Scholar
  102. Shepard, F.P.; Dill, R.F.; and von Rad, Ulrich: Physiography and sedimentary processes of La Jolla Submarine Fan and Fan-Valley, California. Am. Assoc. Petroleum Geologists Bull. 53, 390–420 (1969).Google Scholar
  103. Shrock, R.R.: Sequence in layered rocks, 507 pp. New York: McGraw-Hill Book Co. 1948.Google Scholar
  104. Siemers, Charles T.: Sedimentology of the Rock-town channel sandstone, upper part of the Dakota Formation (Cretaceous), Central Kansas. Jour. Sed. Petrology 46, 97–123 (1976).Google Scholar
  105. Singh, Irdra Bir: On some Lebensspuren in the Ganges River sediments, India. Senckenbergiana Marit. 10, 67–73 (1978).Google Scholar
  106. Sorby, H.C.: On the structures produced by the currents present during the deposition of stratified rocks: Geologist 2, 137–147 (1859).Google Scholar
  107. Sorby, H.C.: On the application of quantitative methods to the study of the structure and history of rocks. Geol. Soc. London Quart. Jour. 64, 171–232 (1908).Google Scholar
  108. Stanley, D.J.: Vertical petrographic variability in Annot sandstone turbidites: some preliminary observations and generalizations. Jour. Sed. Petrology 33, 783–788 (1963).Google Scholar
  109. Stanley, D.J.: Dish structures and sand flow in ancient submarine valleys, French Maritime Alps. Bull. Centre Rech. Pau-S.N.P.A. 8, 351–371 (1974).Google Scholar
  110. Steinmetz, Richard: Analyis of vectorial data. Jour. Sed. Petrology 32, 801–812 (1962).Google Scholar
  111. Stauffer, P.H.: Grain-flow deposits and their implications, Santa Ynez Mountains, California. Jour. Sed. Petrology 37, 487–508 (1967).Google Scholar
  112. Stone, B.D.: Analysis of slump slip lines and deformation fabric in slumped Pleistocene lake beds. Jour. Sed. Petrology 46, 313–325 (1976).Google Scholar
  113. Thompson, W.O.: Original structures of beaches, bars and dunes. Geol. Soc. America Bull. 48, 723–752 (1937).Google Scholar
  114. Turner, B.R.: Braid plain deposition of the Upper Triassic Molteno Formation in the main Karoo (Gondwana) Basin, South Africa. Sedimentology 30, 77–89 (1983).Google Scholar
  115. Walker, R.G.: Distinctive types of ripple drift cross-lamination. Sedimentology 2, 173–188 (1963).Google Scholar
  116. Walker, R.G.: Geometrical analysis of ripple-drift cross-lamination. Canadian Jour. Earth Sci. 6, 383–392 (1969).Google Scholar
  117. Weimer, R.H., and Hoyt, J.H.: Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments. Jour. Paleontology 38, 761–767 (1964).Google Scholar
  118. Williams, George E.: Flood deposits of the sand-bed ephemeral streams of central Australia. Sedimentology 17, 1–40 (1971).Google Scholar
  119. Woodcock, N.H.: Ludlow Series slumps and turbidites and the form of the Montgomery Trough, Powys, Wales. Proc. Geol. Assoc. 87, 169–182 (1976).Google Scholar
  120. Woodcock, N.H.: The use of slump structures as paleoslope orientation estimators. Sedimentology 26, 83–99 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • F. J. Pettijohn
    • 1
  • Paul Edwin Potter
    • 2
  • Raymond Siever
    • 3
  1. 1.The Johns Hopkins UniversityBaltimoreUSA
  2. 2.University of CincinnatiCincinnatiUSA
  3. 3.Harvard UniversityCambridgeUSA

Personalised recommendations