Skip to main content

The Hydrodynamic Level of Description

  • Chapter
  • 589 Accesses

Abstract

The hydrodynamic level of description is an extension of the thermodynamic level that takes into account the dependence of the extensive variables on spatial coordinates. Even an ensemble in which the systems are spatially uniform on the average involves fluctuations that differ from one position to another. Consider, for example, the particle mass density, ρ(r, t), in a simple fluid like water. In an equilibrium ensemble the average density, ρe, will be constant in the absence of an external field. Because of the molecular nature of water it is clear that at a given time t and position r different members of the ensemble will possess different values of the number density. We have already encountered this at the Boltzmann level of description in Sections 3.2 and 3.3. There it was necessary to keep track of the number of particles with a given range of positions and momenta. The hydrodynamic level is intermediate between the Boltzmann and thermodynamic levels and adds the momentum to the basic extensive thermodynamic variables. At the hydrodynamic level one has a closed description of the spatial dependence of the densities of extensive variables throughout a system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Diffusion and Heat Transport

  • S.R. deGroot and P. Mazur, Non-equilibrium Thermodynamics (North Holland, Amsterdam, 1962; reprinted by Dover, 1984), Chapter XI.

    Google Scholar 

  • D.D. Fitts, Nonequilibrium Thermodynamics (McGraw-Hill, New York, 1962).

    Google Scholar 

  • D.G. Miller, Thermodynamics of irreversible processes: Experimental verification of the Onsager reciprocal relations, Chem. Rev. 60, 15–37 (1960).

    Article  CAS  Google Scholar 

  • D.G. Miller, V. Vitagliano, and R. Sartorio, Some comments on multicomponent diffusion: Negative main term diffusion coefficients, Second Law constraints, solvent choices, and reference frame transformations, J. Phys. Chem. 90, 1509–1519 (1986).

    Article  CAS  Google Scholar 

The Hydrodynamic Level of Description

  • G.K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  • R.F. Fox and G.E. Uhlenbeck, Contributions to nonequilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Phys. Fluids 13, 1893–1902 (1970).

    Article  Google Scholar 

  • D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (W.A. Benjamin, New York, 1975).

    Google Scholar 

Fluctuating Hydrodynamics

  • L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959), Chapter XVII.

    Google Scholar 

  • R.F. Fox, Gaussian stochastic processes in physics, Phys. Reports 48, 179–283 (1978).

    Article  Google Scholar 

  • J. Keizer, A theory of spontaneous fluctuations in viscous fluids far from equilibrium, Phys. Fluids 21, 198–208 (1978).

    Article  CAS  Google Scholar 

Nonlocal Fluctuating Hydrodynamics

  • P. Schofield, in Physics of Simple Liquids, H.N.V. Temperely, J.S. Rowlinson, and G.S. Rushbrooke, eds. (North-Holland, Amsterdam, 1968), p. 564–592.

    Google Scholar 

  • M. Medina-Noyola and J. Keizer, Spatial correlations in nonequilibrium systems: the effect of diffusion, Physica 107A, 437–463 (1981).

    Google Scholar 

  • J. Keizer and M. Medina-Noyola, Spatially nonlocal fluctuation theories: hydrodynamic fluctuations for simple liquids, Physica 115A, 301–339 (1982).

    CAS  Google Scholar 

  • E. Peacock-Lopez and J. Keizer, Hydrodynamic calculation of static correlation functions for homogeneous shear, Physics Letters 108A, 85–90 (1985).

    CAS  Google Scholar 

Chemical Reactions and Diffusion

  • C.W. Gardiner, K.J. McNeil, D.F. Walls, and I.S. Matheson, Correlations in stochastic theories of chemical reactions, J. Stat. Phys. 14, 307–331 (1976).

    Article  Google Scholar 

  • J. Keizer, Master equations, Langevin equations, and the effect of diffusion on concentration fluctuations, J. Chem. Phys. 67, 1473–1476 (1977).

    Article  CAS  Google Scholar 

  • D. McQuarrie and J. Keizer, Fluctuations in chemically reacting systems, in Theoretical Chemistry: Advances and Perspectives, Vol. 6A, D. Henderson, ed. (Academic Press, New York, 1981), pp. 165–213.

    Google Scholar 

  • N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981), Chapter XII.

    Google Scholar 

Light and Neutron Scattering

  • B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  • J.R.D. Copley and S.W. Lovesey, The dynamic properties of monatomic liquids, Rep. Prog. Phys. 38, 461–563 (1975).

    Article  CAS  Google Scholar 

  • D. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976), Chapter 21.

    Google Scholar 

  • R.A. Fleury and J.P. Boon, Brillouin scattering in simple liquids: argon and neon, Phys. Rev. 186, 244–254 (1969).

    Article  CAS  Google Scholar 

  • W.E. Alley, B.J. Alder, and S. Yip, The neutron scattering function for hard spheres, Phys. Rev. A 21, 3174–3186 (1983).

    Article  Google Scholar 

  • C.L. O’Connor and J.P. Schlupf, Brillouin scattering in water: The Landau-Placzek ratio, J. Chem. Phys. 47, 31-38 (1967).

    Google Scholar 

Light Scattering in Thermal Gradients

  • R. Fox, Testing theories of nonequilibrium processes with light-scattering techniques, J. Phys. Chem. 86, 2812–2818 (1982).

    Article  CAS  Google Scholar 

  • D. Beysens, Y. Garrabos, and G. Zalczer, Experimental evidence for Brillouin asymmetry induced by a temperature gradient, Phys. Rev. Letters 45, 403–406 (1980).

    Article  Google Scholar 

  • A.M.S. Tremblay, E. Siggia, and M. Arai, Fluctuations about simple nonequilibrium steady states, Phys. Rev. A 23, 1451–1480 (1981).

    Article  Google Scholar 

  • T.R. Kirkpatrick, E.G.D. Cohen, and J.R. Dorfman, Light scattering by a fluid in a nonequilibrium steady state. I. Small gradients, Phys. Rev. A 26, 972–994 (1982).

    Article  Google Scholar 

  • I. Procaccia, D. Ronis, and I. Oppenheim, Light scattering from nonequilibrium stationary states: The implications of broken time-reversal symmetry, Phys. Rev. Letters A 19, 287–291 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keizer, J. (1987). The Hydrodynamic Level of Description. In: Statistical Thermodynamics of Nonequilibrium Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1054-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1054-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6998-4

  • Online ISBN: 978-1-4612-1054-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics