Linear Transport

  • Carlo Cercignani
Part of the Applied Mathematical Sciences book series (AMS, volume 67)

Abstract

Because of the nonlinear nature of the collision term, the Boltzmann equation is very difficult to solve and to analyse. In Chapter III, Section 10, we studied a very particular class of solutions; namely, the Maxwellians. The meaning of a Maxwellian distribution is clear: it describes equilibrium states (or slight generalizations of them, characterized by the fact that neither heat flux nor stresses other than isotropic pressure are present). If we want to describe more realistic nonequilibrium situations, when oblique stresses are present and heat transfer takes place, we have to rely upon approximate methods.

Keywords

Corn Torque Boron Librium Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. I. Akhiezer and I. M. Glazman, “Theory of Linear Operators in Hilbert Space” (translated by M. Nestell), Frederick Ungar Publishing Co., New York (1963).Google Scholar
  2. [2]
    F. Riesz and B. Sz. Nagy, “Functional Analysis” (translated by L. Boron), Frederick Ungar Publishing Co., New York (1955).Google Scholar
  3. [3]
    T. Kato, “Perturbation Theory for Linear Operators”, Springer-Verlag, N.Y. (1966).MATHGoogle Scholar
  4. [4]
    M. Schechter, “Principles of Functional Analysis”, Academic Press, N.Y. (1971).MATHGoogle Scholar
  5. [5]
    N. Dunford and J. Schwartz, “Linear Operators”, Interscience, vol. I (1958) and II (1963).Google Scholar
  6. [6]
    C. Cercignani, “High Mach Number Flow on an Almost Specularly Reflecting Plate with Sharp Leading Edge”, Presented at the VIII Symposium on Rarefied Gas Dynamics, Stanford (1972).Google Scholar
  7. [7]
    A. M. Weinberg and E. P. Wigner, “The Physical Theory of Neutron Chain Reactors”, University of Chicago Press, Chicago (1958).Google Scholar
  8. [8]
    H. Hurwitz, M. S. Nelkin and G. J. Habetler, “Nucl. Sci. Eng.” 1, 280 (1956).Google Scholar
  9. [9]
    I. KuŠčcer and G. C. Summerfield, “Phys. Rev.”, 188, 1445 (1969).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Chandrasekhar, “Radiative Transfer”, Oxford University Press, Oxford (1950).MATHGoogle Scholar
  11. [11]
    I, Marek, “Appl. Mat.” 8, 442 (1963).MathSciNetMATHGoogle Scholar
  12. [12]
    J. Mika, “J. Quant. Spectrosc. Radiat. Transfer” 1, 869 (1971).MathSciNetGoogle Scholar
  13. [13]
    G. N. Watson, “Theory of Bessel Functions”, Cambridge University Press, Cambridge (1958).Google Scholar
  14. [14]
    I. M. Gel’fand and co-authors, “Generalized Functions”, English translation from the Russian, Academic Press, New York (1964).Google Scholar
  15. [15]
    C. S. Wang Chang and G. E. Uhlenbeck, “On the Propagation of Sound in Monatomic Gases”, University of Michigan Press, Project M 999, Ann. Arbor, Michigan (1952). Reprinted in “The Kinetic Theory of Gases”, Studies in Statistical Mechanics, vol. V, North-Holland, Amsterdam (1970).Google Scholar
  16. [16]
    C. Cercignani, “Mathematical Methods in Kinetic Theory”, Plenum Press, New York (1969).MATHGoogle Scholar
  17. [17]
    M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions”, Dover, New York (1965).Google Scholar
  18. [18]
    Bateman Manuscript Project, “Higher Transcendental Functions”, McGraw-Hill Book Co., New York (1953).Google Scholar
  19. [19]
    H. M. Mott Smith, “A New Approach in the Kinetic Theory of Gases”, MIT Lincoln Laboratory Group Report V, 2 (1954).Google Scholar
  20. [20]
    Z. Alterman, K. Frankowski and C. L. Pekeris, “Astrophys. J. Suppl.”,7,291 (1962).ADSCrossRefGoogle Scholar
  21. [21]
    G. Grad, in “Rarefied Gas Dynamics”, J. A. Laurmann, Ed., Vol. 1, 26, Academic Press, New York (1963).Google Scholar
  22. [22]
    J. R. Dorfman, “Proc. of the Nat. Acad. of Sciences”, U.S.A., 50, 804 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    I. KuŠčcer and M. M. R. Williams, “Phys. Fluids”, 10, 1922 (1967).ADSCrossRefGoogle Scholar
  24. [24]
    G. M. Wing, “An Introduction to Transport Theory”, John Wiley & Sons, Inc., New York (1962).Google Scholar
  25. [25]
    C. Cercignani, “Phys. Fluids”, 10, 2097 (1967).ADSCrossRefGoogle Scholar
  26. [26]
    L. Sirovich and J. K. Thurber, in “Rarefied Gas Dynamics” J. H. de Leeuw, Ed., Vol. I, 21 (1965).Google Scholar
  27. [271.
    L. Sirovich and J. K. Thurber, “J. Math. Phys.”, 10, 239 (1969).MathSciNetADSCrossRefGoogle Scholar
  28. [281.
    B. Nicolaenko, “Dispersion Laws for Plane Wave Propagation”, in ”The Boltzmann Equation”, Edited by F. A. Grunbaum, Courant Institute, New York University, New York (1972).Google Scholar
  29. [29]
    M. Schechter, “J. Math. Anal, and Appl.”, 13, 205 (1966).MathSciNetMATHCrossRefGoogle Scholar
  30. [301.
    K. Gustafson and T. Weismann, “J. Math. Anal, and Appl.” 25, 121 (1969).MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    M. Bixon, J. R. Dorfman amd K. C. Mo, “Phys. Fluids”, 14, 1049 (1971).ADSMATHCrossRefGoogle Scholar
  32. [321.
    J. A. Mclennan, “Phys. Fluids”, 8, 1580 (1965).MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J. A. Mclennan, “Phys. Fluids”, 9, 1581 (1966).ADSMATHCrossRefGoogle Scholar
  34. [34]
    G. Scharf, “Helvetica Physica Acta”, 40, 929 (1967).MathSciNetMATHGoogle Scholar
  35. [35]
    K. M. Case, “The Soluble Boundary Value Problems of Transport Theory”, in “The Boltzmann Equation”, Edited by F. A. Grunbaum, Courant Institute, New York University, New York (1972).Google Scholar
  36. [36]
    E. P. Gross and E. A. Jackson, “Phys. Fluids”, 2, 432 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    L. Sirovich, “Phys. Fluids”, 5, 908 (1962).MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    C. Cercignani, “Ann. Phys. (N.Y.)”, 40, 469 (1966).MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S. K. Loyalka and J. H. Ferziger, Phys. Fluids, 10, 1833 (1967).ADSMATHCrossRefGoogle Scholar
  40. [40]
    N. Corngold et al., “Nucl. Sci. Engng.”, 15, 13 (1963).Google Scholar
  41. [41]
    I. K. KuŠčcer and N. Corngold, “Phys. Rev.”, 139, A981 (1965).ADSCrossRefGoogle Scholar
  42. [42]
    N. Corngold, in “Transport Theory”, R. Bellman et al., Eds., p. 79, American Mathematical Society, Providence, R.I. (1969).Google Scholar
  43. [43]
    M. M. R. Williams, “The Slowing Down and Thermalisation of Neutrons”, North-Holland, Amsterdam (1966).Google Scholar
  44. [44]
    C. Cercignani, “J. Stat. Phys.”, 1, 297 (1969).ADSCrossRefGoogle Scholar
  45. [45]
    H. Lang and S. K. Loyalka, “On Variational Principles in the Kinetic Theory”, Presented at the VII Symposium on Rarefied Gas Dynamics, Pisa (1970).Google Scholar
  46. [46]
    H. Lang, “Acta Mechanica”, 5, 163 (1968).MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    K. M. Case, in “Transport Theory”, R. Bellman et al., Eds., p. 17, American Mathematical Society, Providence, R.I. (1969).Google Scholar
  48. [48]
    R. E. Pejerls, “Proc. Camb. Phil. Soc. Math. Phys. Sci.”, 35, 610 (1939).ADSCrossRefGoogle Scholar
  49. [49]
    C. Cercignani and C. D. Pagani, “Phys. Fluids”, 9, 1167 (1966).ADSCrossRefGoogle Scholar
  50. [50]
    C. Cercignani and C. D. Pagani, in “Rarefied Gas Dynamics”. C. L. Brundin, Ed., Vol. I, 55, Academic Press, New York (1967).Google Scholar
  51. [51]
    C. Cercignani and C. D. Pagani, “Phys. Fluids”, 11, 1399 (1968).ADSMATHCrossRefGoogle Scholar
  52. [52]
    P. Bassanini, C. Cercignani and C. D. Pagani, “Int. J. Heat and Mass Transfer”, 11, 1359 (1968).MATHCrossRefGoogle Scholar
  53. [53]
    Y. P. Pao, in “Rarefied Gas Dynamics”, M. Becker and M. Fiebig, Eds., Vol. I, A.6–1 DFVLR-Press, Porz-Wahn (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Carlo Cercignani
    • 1
  1. 1.Department of MathematicsPolitecnico di MilanoMilano (I)Italy

Personalised recommendations