# Maximal Accretive Operators, Nonlinear Nonexpansive Semigroups, and First-Order Evolution Equations

Chapter

## Abstract

In Chapter 30 we considered first-order evolution equations of the form , with the operators

(1)

*A*(*t*):*V*→*V** and*b*(*t*) ∈*V** for all*t*∈ ]0,*T*[. In this connection, “*V*⊆*H*⊆*V**” is an evolution triple.### Keywords

Manifold Librium Kato## Preview

Unable to display preview. Download preview PDF.

### References to the Literature

- Komura, Y. (1967):
*Nonlinear semigroups in Hilbert space*. J. Math. Soc. Japan**19**, 493–507.Google Scholar - Crandall, M. and Pazy, A. (1969):
*Semigroups of nonlinear contractions and dissipative sets*. Israel J. Math.**21**, 261–278.Google Scholar - Crandall, M. and Evans, L. (1975):
*On the relation of the operator d/ds + d/dt to evolution governed by accretive operators*. Israel J. Math.**21**, 261–278.Google Scholar - Pazy, A. (1983):
*Semigroups of Linear Operators and Applications to Partial Differential Equations*. Springer-Verlag, New York.CrossRefMATHGoogle Scholar - Butzer, P. and Berens, H. (1967):
*Semigroups of Operators and Approximations*. Springer-Verlag, Berlin.CrossRefGoogle Scholar - Nagel, R.
*et al*. (1986):*One-Parameter Linear Semigroups of Positive Operators*. Springer Lecture Notes in Mathematics, Vol. 1184. Springer-Verlag, Berlin.Google Scholar - Crandall, M. (1986):
*Nonlinear semigroups and evolution governed by accretive operators*. In: Browder, F. [ed.] (1986), Part 1, pp. 305–338.Google Scholar - Brezis, H. (1973):
*Operateurs maximaux monotones*. North-Holland, Amsterdam.MATHGoogle Scholar - Barbu, V. (1976):
*Nonlinear Semigroups and Differential Equations in Banach Spaces*. Noordhoff, Leyden.CrossRefMATHGoogle Scholar - Deimling, K. (1985):
*Nonlinear Functional Analysis*. Springer-Verlag, New York.CrossRefMATHGoogle Scholar - Pavel, N. (1987):
*Nonlinear Evolution Operators and Semigroups*. Springer-Verlag, New York.MATHGoogle Scholar - Belleni-Morante, A. (1979):
*Applied Semigroups and Evolution Equations*. Clarendon, Oxford.MATHGoogle Scholar - Benilan, P., Crandall, M., and Pazy, A. (1989):
*Nonlinear Evolution Governed by Accretive Operators*(monograph to appear).Google Scholar - Kato, T. (1975):
*Quasilinear equations of evolution with applications to partial differential equations*. Lecture Notes in Mathematics, Vol. 448, pp. 25–70. Springer-Verlag, New York.Google Scholar - Kato, T. (1975a):
*The Cauchy problem for quasilinear symmetric hyperbolic systems*. Arch. Rational Mech. Anal.**58**, 181–205.Google Scholar - Kato, T. (1976):
*Linear and quasilinear equations of evolution of hyperbolic type*. In:*Hyperbolicity*, Centro Internationale Matematico Estivo II Ciclo 1976, Italy, pp. 125–191.Google Scholar - Kato, T. (1985):
*Abstract Differential Equations and Nonlinear Mixed Problems*. Lezione Fermiane, Pisa.Google Scholar - Kato, T. (1986):
*Nonlinear equations of evolution in B-spaces*. In: Browder, F. [ed.] (1986), Part 2, pp. 9–24.Google Scholar - Crandall, M. and Sougandis, P. (1986):
*Convergence of difference approximations of quasilinear evolution equations*. Nonlinear Anal.**10**, 425–445.Google Scholar - Amann, H. (1988):
*Remarks on quasilinear parabolic systems*(to appear).Google Scholar - Amann, H. (1988a):
*Dynamic theory of quasilinear parabolic equations*, I, II (to appear).Google Scholar - Hughes, T., Kato, T., and Marsden, J. (1977):
*Well-posed quasilinear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity*. Arch. Rational Mech. Anal.**63**, 273–294.Google Scholar - Marsden, J. and Hughes, T. (1983):
*Mathematical Foundations of Elasticity*. Prentice- Hall, Englewood Cliffs, NJ.Google Scholar - Majda, A. (1984):
*Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables*. Springer-Verlag, New York.CrossRefMATHGoogle Scholar - Christodoulou, D. and Klainerman, S. (1990):
*Nonlinear Hyperbolic Equations*(monograph to appear).Google Scholar - Henry, D. (1981):
*Geometric Theory of Semilinear Parabolic Equations*. Lecture Notes in Mathematics, Vol. 840. Springer-Verlag, Berlin.Google Scholar - Amann, H. (1984):
*Existence and regularity for semilinear parabolic evolution equations*. Ann. Scuola Norm. Sup. Pisa, CI. Sci. Serie IV,**11**, 593–676.Google Scholar - Amann, H. (1985):
*Global existence for semilinear parabolic systems*. J. Reine. Angew. Math.**360**, 47–83.Google Scholar - Amann, H. (1986):
*Quasilinear evolution equations and parabolic systems*. Trans. Amer. Math. Soc.**293**, 191–227.Google Scholar - Amann, H. (1986a):
*Quasilinear parabolic systems under nonlinear boundary conditions*. Arch. Rational Mech. Anal.**92**, 153–192.Google Scholar - Amann, H. (1986b):
*Semigroups and nonlinear evolution equations*. Linear Algebra Appl.**84**, 3–32.Google Scholar - Amann, H. (1986c):
*Parabolic evolution equations with nonlinear boundary conditions*. In: Browder, F. [ed.] (1986), Part 1, pp. 17–27.Google Scholar - Amann, H. (1988b):
*Parabolic evolution equations in interpolation and extrapolation spaces*. J. Funct. Anal.**78**, 233–277.Google Scholar - Amann, H. (1988c):
*Parabolic equations and nonlinear boundary conditions*. J. Differential Equations**72**, 201–269.Google Scholar - Babin, A. and Visik, M. (1983):
*Regular attractors of semigroups and evolution equations*. J. Math. Pures Appl.**62**, 441–491.Google Scholar - Babin, A. and Visik, M. (1983a):
*Attractors of evolution equations and estimates for their dimensions*. Uspekhi Mat. Nauk**38**(4), 133–187 (Russian).Google Scholar - Babin, A. and Visik, M. (1986):
*Unstable invariant sets of semigroups of nonlinear operators and their perturbations*. Uspekhi Mat. Nauk**41**(4), 3–34 (Russian).Google Scholar - Temam, R. (1986):
*Infinite-dimensional dynamical systems in fluid dynamics*. In: Browder, F. [ed.] (1986), Part 2, pp. 431–445.Google Scholar - Temam, R. (1988):
*Infinite-Dimensional Dynamical Systems in Mechanics and Physics*. Springer-Verlag, New York.CrossRefMATHGoogle Scholar - Ladyzenskaja, O. (1987):
*On the construction of minimal global attractors for the Navier-Stokes equations and other partial differential equations*. Uspekhi Mat. Nauk**42**(6), 25–60.Google Scholar - Hale, J. (1988):
*Asymptotic Behavior of Dissipative Systems*. Amer. Math. Soc., Providence, RI.Google Scholar

## Copyright information

© Springer Science+Business Media New York 1990