Skip to main content

General Geometric Problems

  • Chapter
Unsolved Problems in Geometry

Part of the book series: Problem Books in Mathematics ((1605,volume 2))

Abstract

Most of the problems encountered so far have involved convex sets, or other sets with considerable intrinsic geometric structure. Nevertheless, one can study the geometry of much more general objects, for example, sets that are just closed or Lebesgue measurable, or even completely arbitrary. This chapter contains a selection of problems which, at least at first glance, are of such a general nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Magic numbers

  • J. Cleary & S. A. Morris, Numerical geometry… not numerical topologyMath. Chronicle 13(1984) 47–58.

    MathSciNet  MATH  Google Scholar 

  • J. Cleary, S. A. Morris & D. Yost, Numerical geometry—numbers for shapesAmer. Math. Monthly 93(1986) 260–275.

    Article  MathSciNet  MATH  Google Scholar 

  • O. Gross, The rendezvous value of a metric span, inAdvances in Game TheoryAnn. Math. Studies 52, Princeton University, Princeton, 1964, 49–53.

    Google Scholar 

  • S. A. Morris & P. Nickolas, On the average distance property of compact connected metric spacesArch. Math. (Basel) 40(1983) 459–463;MR 85g:54020.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Nickolas & D. T. Yost, On the average distance property for subsets of Euclidean spaceArch. Math. (Basel) 50(1988) 380–384;MR 89d:51026.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Stadje, A property of compact, connected spacesArch. Math. (Basel) 36(1981) 275–280;MR 83e:54028.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Strantzen, An average distance result in Euclidean n-spaceBull. Australian Math. Soc. 26(1982) 321–330;MR 84e:52015.

    Article  MathSciNet  MATH  Google Scholar 

  • D. T. Yost, Average distances in compact connected spacesBull. Austral. Math. Soc. 26(1982) 331–342;MR 84e:52016.

    Article  MathSciNet  MATH  Google Scholar 

Metrically homogeneous sets

  • B. Grünbaum & L. M. Kelly, Metrically homogeneous setsIsrael J. Math. 6(1968) 183–197, correction in8(1970) 93–95;MR 39 #618042 #3679.

    Google Scholar 

Arcs with increasing chords

Maximal sets avoiding certain distance configurations

  • H. T. Croft & K. J. Falconer, On maximal Euclidean sets avoiding certain distance configurationsMath. Proc. Cambridge Philos. Soc. 89(1981) 79–88;MR 81m:52023.

    Article  MathSciNet  MATH  Google Scholar 

Moving furniture around

  • R. J. McG. Dawson, On the mobility of bodies inR n Math. Proc. Cambridge Philos.Soc. 98(1985) 403–412, corrigenda99(1986) 377–379;MR 87h:52016a,b.

    Google Scholar 

  • H. G. Debrunner & P. Mani-Levitska, Can you cover your shadows?Discrete Com-put. Geom. 1(1986) 45–58;MR 87e:52010.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Goldberg, Solution to problem 66–11SIAM J. 11(1969) 76–78.

    Google Scholar 

  • R. K. Guy, Monthly research problems, 1969–77Amer. Math. Monthly 84(1977) 807–815.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Kedem & M. Sharir, An efficient motion-planning algorithm for a convex polygonal objectDiscrete Comput. Geom. 5(1990) 43–75.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Maruyama, An approximation method for solving the sofa problemInter. J. Comp. Inf. Sci. 2(1973) 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Moser, Problem 66–11SIAM Rev. 8(1966) 381.

    Article  Google Scholar 

  • J. T. Schwartz & M. Sharir, On the “piano mover’s” problemI Commun. Pure Appl. Math. 36(1983) 345–398;MR 84h:70005; IIAdv. Appl. Math. 4(1983) 298–351;MR 85h:52014;III Int. J. Robotics Res. 2(1983) 46–75;MR 86a:52016; VCommun. Pure Appl. Math. 37(1984) 815–848;MR 86j:52010.

    Google Scholar 

  • M. Sharir & E. Ariel-Sheffi, On the piano mover’s problem, IVCommun. Pure Appl. Math. 37(1984) 479–493;MR 86j:52009.

    Article  MathSciNet  MATH  Google Scholar 

  • G. Strang, The width of a chairAmer. Math. Monthly 89(1982) 529–534;MR 84e:52005.

    Article  MathSciNet  MATH  Google Scholar 

  • N. R. Wagner, The sofa problemAmer. Math Monthly 83(1976) 188–189;MR 53# 1422.

    Article  MathSciNet  MATH  Google Scholar 

Questions related to the Kakeya problem

Measurable sets and lines

Determining curves from intersections with lines

Two sets which always intersect in a point

The chromatic number of the plane and of space

  • N. G. de Bruijn & P. Erdös, A color problem for infinite graphs and a problem in the theory of relationsIndag. Math. 13(1951) 369–373;MR 13763.

    Google Scholar 

  • H. T. Croft, Incidence incidentsEureka (Cambridge) 30(1967) 22–26.

    Google Scholar 

  • K. J. Falconer, The realization of distances in measurable subsets coveringR n J. Combin. Theory Ser. A 31(1981) 184–189;MR 82m:05031.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Frankl & R. M. Wilson, Intersection theorems with geometric consequencesCombinatorica 1(1981) 357–368;MR 84g:05085.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Hadwiger, Ein Uberdeckungssätz für den Euklidischen RaumPortugal Math. 4(1944) 140–144.

    MathSciNet  MATH  Google Scholar 

  • H. Hadwiger, Ueberdeckung des Euklidischen Raumes durch kongruente MengenPortugaliae Math. 4(1945) 238–242;MR 7215.

    MathSciNet  MATH  Google Scholar 

  • H. Hadwiger, Ungelöste Problem Nr 40Elem. Math. 16(1961) 103–104.

    MathSciNet  Google Scholar 

  • H. Hadwiger, H. Debrunner & V. Klee, [HDK].

    Google Scholar 

  • V. Klee, Some unsolved problems in plane geometryMath. Mag. 52(1979) 131–145;MR 80m:52006.

    Article  MathSciNet  MATH  Google Scholar 

  • D. G. Larman, A note on the realization of distances within sets in Euclidean spaceComment. Math. Helv. 53(1978) 529–535;MR 80b:52026.

    Article  MathSciNet  MATH  Google Scholar 

  • D. G. Larman & C. A. Rogers, The realization of distances within sets in Euclidean spaceMathematika 19(1972) 1–24;MR 47 #7601.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Moser & W. Moser, Problem 10Canad. Math. Bull. 1(1958) 192, solution inCanad. Math. Bull. 4(1961) 187–189.

    Google Scholar 

  • W. Moser & J. Pach, Problem 61, [MP].

    Google Scholar 

  • D. E. Raiskii, Realizations of all distances in a decomposition of the spaceR ninto n + 1 partsMat. Zametki 7(1970) 319–323;MR 41 #6059.

    MathSciNet  Google Scholar 

  • L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distances in Euclidean spaceCombinatorica 4(1984) 213–218;MR 85m:52008.

    Article  MathSciNet  MATH  Google Scholar 

  • L. A. Székely, Remarks on the chromatic number of geometric graphs, inGraphs and other Combinatorial TopicsTeubner-Texte zur Mathematik 59, Leipzig, 1983, 312–315.MR 85e:05076.

    Google Scholar 

  • L. A. Székely & N. C. Wormold, Bounds on the measurable chromatic number of ℝn Discrete Math. 75(1989) 343–372.

    Article  MathSciNet  MATH  Google Scholar 

  • D. R. Woodall, Distances realized by sets covering the planeJ. Combin. Theory Ser. A 14(1973) 187–200;MR 46 #9868.

    Article  MathSciNet  MATH  Google Scholar 

Geometric graphs

  • R. B. Eggleton, P. Erdös & D. K. Skilton, Colouring the real lineJ. Combin. Theory Ser. B 39(1985) 86–100;MR 87b:05057.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, Combinatorial problems in geometry and number theory, inRelations Between Combinatorics and other Parts of MathematicsProc. Symp. Pure Math. 34, Amer. Math. Soc., 1970, 149–162.

    Google Scholar 

  • P. Erdös & M. Simonovits, On the chromatic number of geometric graphsArs Combin. 9(1980) 229–246;MR 82c:05048.

    MathSciNet  MATH  Google Scholar 

  • K. J.Falconer, The realization of small distances in plane sets of positive measureBull. London Math. Soc. 18(1986) 475–477;MR 87h:28008.

    Article  MathSciNet  MATH  Google Scholar 

  • L. A. Székely, Remarks on the chromatic number of geometric graphs, inGraphs and other Combinatorial TopicsTeubner-Texte zur Mathematik 59, Leipzig, 1983, 312–315;MR 85e:05076.

    Google Scholar 

  • L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distance in Euclidean space.Combinatorica 4(1984) 213–218;MR 85m:52008.

    Article  MathSciNet  MATH  Google Scholar 

Euclidean Ramsey problems

  • P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer & E. G. Straus, Euclidean Ramsey theorems I, II, IIIJ. Combin. Theory Ser. A 14(1973) 341–363Colloq. Math. Soc. János Bolyai 10(1973) 529–557, 559–583;MR 47# 482552 #293552 #2936.

    Google Scholar 

  • P. Frankl & V. Rödl, All triangles are RamseyTrans. Amer. Math. Soc. 297(1986) 777–779;MR 88d:05018.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Frankl & V. Rödl, Forbidden intersectionsTrans. Amer. Math. Soc. 300(1987) 259–286;MR 88m:05003.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Frankl & V. Rödl, A partition property of simplices in Euclidean spacesJ. Amer. Math. Soc. 3(1990) 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  • R. L. Graham, On partitions of En J. Combin. Theory Ser. A 28(1980) 89–97;MR 81g:05021.

    Article  MathSciNet  MATH  Google Scholar 

  • R. L. Graham, Old and new Euclidean Ramsey theorems, [GLMP], 20–30;MR 87b:05021.

    Google Scholar 

  • R. L. Graham, B. L. Rothschild & J. H. SpencerRamsey TheoryWiley, New York, 1980;MR 82b:05001.

    MATH  Google Scholar 

  • R. Juhász, Ramsey-type theorems in the planeJ. Combin. Theory Ser. A 27(1979) 152–160;MR 81f:05125.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Shader, All right triangles are Ramsey in E2!J. Combin. Theory Ser. A 20(1976) 385–389.

    Article  MathSciNet  MATH  Google Scholar 

Triangles with vertices in sets of a given area

  • P. Erdös, Some combinatorial, geometric and set theoretic problems in measure theory, inMeasure TheoryOberwolfach, 1983, 321–327; Lecture Notes in Math. 108, Springer, Berlin, 1984.

    Google Scholar 

Sets containing large triangles

  • J. Bourgain, A Szemerédi type theorem for sets of positive density inR k Israel J. Math. 54(1986) 307–316;MR 87j:11012.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Erdös, Some combinatorial, geometric and set theory problems in measure theoryMeasure TheoryOberwolfach 1983, Lecture Notes in Math. 1089, Springer-Verlag, 321–327.

    Google Scholar 

  • K. J. Falconer, A problem of Erdös on fractal combinatorial geometryJ. Combin. Theory. Ser. A.to appear.

    Google Scholar 

  • K. J. Falconer & J. M. Marstrand, Sets with positive density at infinity contain all large distancesBull. London Math. Soc. 18(1986) 471–474;MR 87h:28007.

    Article  MathSciNet  MATH  Google Scholar 

Similar copies of sequences

  • J. Arias de Reyna, Some results connected with a problem of Erdös IIIProc. Amer. Math. Soc. 89(1983) 291–292;MR 85d:28001.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Bourgain, Construction of sets of positive measure not containing an affine image of a given infinite structureIsrael J. Math. 60(1987) 333–344;MR 89g:28004.

    Article  MathSciNet  MATH  Google Scholar 

  • S. J. Eigen, Putting convergent sequences into measurable setsStudia Sci. Math. Hungar. 20(1985) 411–412;MR 88f:28003.

    MathSciNet  Google Scholar 

  • P. Erdös, My Scottish Book “problems,” in [Mau], 35–43.

    Google Scholar 

  • K. J. Falconer, On a problem of Erdös on sequences and measurable setsProc. Amer. Math. Soc. 90(1984) 77–78;MR 85e:28008.

    MathSciNet  MATH  Google Scholar 

  • P. Komjáth, Large sets not containing images of a given sequenceCanad. Math. Bull. 26(1983) 41–43;MR 85d:28003.

    Article  MathSciNet  MATH  Google Scholar 

Unions of similar copies of sets

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Croft, H.T., Falconer, K.J., Guy, R.K. (1991). General Geometric Problems. In: Unsolved Problems in Geometry. Problem Books in Mathematics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0963-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0963-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6962-5

  • Online ISBN: 978-1-4612-0963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics