Abstract
Most of the problems encountered so far have involved convex sets, or other sets with considerable intrinsic geometric structure. Nevertheless, one can study the geometry of much more general objects, for example, sets that are just closed or Lebesgue measurable, or even completely arbitrary. This chapter contains a selection of problems which, at least at first glance, are of such a general nature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Magic numbers
J. Cleary & S. A. Morris, Numerical geometry… not numerical topologyMath. Chronicle 13(1984) 47–58.
J. Cleary, S. A. Morris & D. Yost, Numerical geometry—numbers for shapesAmer. Math. Monthly 93(1986) 260–275.
O. Gross, The rendezvous value of a metric span, inAdvances in Game TheoryAnn. Math. Studies 52, Princeton University, Princeton, 1964, 49–53.
S. A. Morris & P. Nickolas, On the average distance property of compact connected metric spacesArch. Math. (Basel) 40(1983) 459–463;MR 85g:54020.
P. Nickolas & D. T. Yost, On the average distance property for subsets of Euclidean spaceArch. Math. (Basel) 50(1988) 380–384;MR 89d:51026.
W. Stadje, A property of compact, connected spacesArch. Math. (Basel) 36(1981) 275–280;MR 83e:54028.
J. Strantzen, An average distance result in Euclidean n-spaceBull. Australian Math. Soc. 26(1982) 321–330;MR 84e:52015.
D. T. Yost, Average distances in compact connected spacesBull. Austral. Math. Soc. 26(1982) 331–342;MR 84e:52016.
Metrically homogeneous sets
B. Grünbaum & L. M. Kelly, Metrically homogeneous setsIsrael J. Math. 6(1968) 183–197, correction in8(1970) 93–95;MR 39 #618042 #3679.
Arcs with increasing chords
K. G. Binmore, On Turan’s lemma, Bull.London Math. Soc. 3(1971) 313–317;MR 44 #5434.
D. G. Larman & P. McMullen, Arcs with increasing chordsProc. Cambridge Philos. Soc. 72(1972) 205–207;MR 45 #4279.
Maximal sets avoiding certain distance configurations
H. T. Croft & K. J. Falconer, On maximal Euclidean sets avoiding certain distance configurationsMath. Proc. Cambridge Philos. Soc. 89(1981) 79–88;MR 81m:52023.
Moving furniture around
R. J. McG. Dawson, On the mobility of bodies inR n Math. Proc. Cambridge Philos.Soc. 98(1985) 403–412, corrigenda99(1986) 377–379;MR 87h:52016a,b.
H. G. Debrunner & P. Mani-Levitska, Can you cover your shadows?Discrete Com-put. Geom. 1(1986) 45–58;MR 87e:52010.
M. Goldberg, Solution to problem 66–11SIAM J. 11(1969) 76–78.
R. K. Guy, Monthly research problems, 1969–77Amer. Math. Monthly 84(1977) 807–815.
K. Kedem & M. Sharir, An efficient motion-planning algorithm for a convex polygonal objectDiscrete Comput. Geom. 5(1990) 43–75.
K. Maruyama, An approximation method for solving the sofa problemInter. J. Comp. Inf. Sci. 2(1973) 29–48.
L. Moser, Problem 66–11SIAM Rev. 8(1966) 381.
J. T. Schwartz & M. Sharir, On the “piano mover’s” problemI Commun. Pure Appl. Math. 36(1983) 345–398;MR 84h:70005; IIAdv. Appl. Math. 4(1983) 298–351;MR 85h:52014;III Int. J. Robotics Res. 2(1983) 46–75;MR 86a:52016; VCommun. Pure Appl. Math. 37(1984) 815–848;MR 86j:52010.
M. Sharir & E. Ariel-Sheffi, On the piano mover’s problem, IVCommun. Pure Appl. Math. 37(1984) 479–493;MR 86j:52009.
G. Strang, The width of a chairAmer. Math. Monthly 89(1982) 529–534;MR 84e:52005.
N. R. Wagner, The sofa problemAmer. Math Monthly 83(1976) 188–189;MR 53# 1422.
Questions related to the Kakeya problem
A. S. Besicovitch, On Kakeya’s problem and a similar oneMath. Zeit. 27(1927) 312–320.
F. Cunningham, The Kakeya problem for simply connected and for star-shaped setsAmer. Math. Monthly 78 (1971)114–129; MR 43# 1044.
R. O. Davies, Some remarks on the Kakeya problemProc. Cambridge Philos Soc. 69(1971) 417–421;MR 42#7069.
K. J. Falconer, Continuity properties ofk-plane integrals and Besicovitch setsMath. Proc. Cambridge Philos. Soc. 87(1980) 221–226;MR 81c:53067.
K. J. FalconerThe Geometry of Fractal SetsCambridge University Press, Cambridge, 1985;MR 88d:28001.
J. M. Marstrand, Packing planes inR 3 Mathematika 26(1979)180–183;MR 81d:52009.
J. M. Marstrand, Packing smooth curves inR q Mathematika 26(1979) 1–12;MR81d:52009.
H. Meschkowski, [Mes].
O. Perron, Über Satz von BesicovitchMath. Zeit. 28(1928) 383–386.
C. A. Rogers, Dimension printsMathematika 35(1988) 1–27.
I. J. Schoenberg, On the Besicovitch—Perron solution of the Kakeya problemStudies in Mathematical AnalysisStanford University Press, Stanford, 1962, 359–363;MR 26# 4218.
I. J. Schoenberg, On certain minima related to the Besicovitch—Kakeya problemMathematica (Cluj) 4(27) (1962) 145–148;MR 27 #4143.
Measurable sets and lines
K. J. Falconer, Continuity properties of k-plane integrals and Besicovitch setsMath. Proc. Cambridge Philos. Soc. 87(1980) 221–226;MR 81c:53067.
H. T. Croft, Three lattice point problems of SteinhausQuart. J. Math. Oxford Ser.(2)33(1982) 71–83;MR 85g:11051.
Determining curves from intersections with lines
K. J. FalconerThe Geometry of Fractal SetsCambridge University Press, Cambridge,1985;MR 88d:28001.
A. Horwitz, Reconstructing, a function from its tangent linesAmer. Math.Monthly 96(1989) 807–813.
L. A. SantalóIntegral Geometry and Geometric ProbabilityAddison—Wesley, Read-ing, Mass., 1976;MR 55 #6340.
H. Steinhaus, Length, shape, and areaColloq. Math. 3(1954) 1–13;MR 16121.
Two sets which always intersect in a point
V. J. Baston & F. A. Bostock, On a theorem of LarmanJ. London Math. Soc.(2)5(1972) 715–718;MR 47#4138.
D. G. Larman, A problem of incidenceJ. London Math. Soc. 43(1968) 407–409;MR 38 #52.
S. MazurkiewiczC. R. Sei. Lett. Varsovie 7(1914) 322–383.
W. Sierpirtski, Cardinal and ordinal numbers, Warsaw, 1958, 446–447.
W. Sierpiíiski, Sur un problème de H. Steinhaus concernant les ensembles de points sur le planeFund. Math. 46(1959) 191–194;MR 21 #851.
The chromatic number of the plane and of space
N. G. de Bruijn & P. Erdös, A color problem for infinite graphs and a problem in the theory of relationsIndag. Math. 13(1951) 369–373;MR 13763.
H. T. Croft, Incidence incidentsEureka (Cambridge) 30(1967) 22–26.
K. J. Falconer, The realization of distances in measurable subsets coveringR n J. Combin. Theory Ser. A 31(1981) 184–189;MR 82m:05031.
P. Frankl & R. M. Wilson, Intersection theorems with geometric consequencesCombinatorica 1(1981) 357–368;MR 84g:05085.
H. Hadwiger, Ein Uberdeckungssätz für den Euklidischen RaumPortugal Math. 4(1944) 140–144.
H. Hadwiger, Ueberdeckung des Euklidischen Raumes durch kongruente MengenPortugaliae Math. 4(1945) 238–242;MR 7215.
H. Hadwiger, Ungelöste Problem Nr 40Elem. Math. 16(1961) 103–104.
H. Hadwiger, H. Debrunner & V. Klee, [HDK].
V. Klee, Some unsolved problems in plane geometryMath. Mag. 52(1979) 131–145;MR 80m:52006.
D. G. Larman, A note on the realization of distances within sets in Euclidean spaceComment. Math. Helv. 53(1978) 529–535;MR 80b:52026.
D. G. Larman & C. A. Rogers, The realization of distances within sets in Euclidean spaceMathematika 19(1972) 1–24;MR 47 #7601.
L. Moser & W. Moser, Problem 10Canad. Math. Bull. 1(1958) 192, solution inCanad. Math. Bull. 4(1961) 187–189.
W. Moser & J. Pach, Problem 61, [MP].
D. E. Raiskii, Realizations of all distances in a decomposition of the spaceR ninto n + 1 partsMat. Zametki 7(1970) 319–323;MR 41 #6059.
L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distances in Euclidean spaceCombinatorica 4(1984) 213–218;MR 85m:52008.
L. A. Székely, Remarks on the chromatic number of geometric graphs, inGraphs and other Combinatorial TopicsTeubner-Texte zur Mathematik 59, Leipzig, 1983, 312–315.MR 85e:05076.
L. A. Székely & N. C. Wormold, Bounds on the measurable chromatic number of ℝn Discrete Math. 75(1989) 343–372.
D. R. Woodall, Distances realized by sets covering the planeJ. Combin. Theory Ser. A 14(1973) 187–200;MR 46 #9868.
Geometric graphs
R. B. Eggleton, P. Erdös & D. K. Skilton, Colouring the real lineJ. Combin. Theory Ser. B 39(1985) 86–100;MR 87b:05057.
P. Erdös, Combinatorial problems in geometry and number theory, inRelations Between Combinatorics and other Parts of MathematicsProc. Symp. Pure Math. 34, Amer. Math. Soc., 1970, 149–162.
P. Erdös & M. Simonovits, On the chromatic number of geometric graphsArs Combin. 9(1980) 229–246;MR 82c:05048.
K. J.Falconer, The realization of small distances in plane sets of positive measureBull. London Math. Soc. 18(1986) 475–477;MR 87h:28008.
L. A. Székely, Remarks on the chromatic number of geometric graphs, inGraphs and other Combinatorial TopicsTeubner-Texte zur Mathematik 59, Leipzig, 1983, 312–315;MR 85e:05076.
L. A. Székely, Measurable chromatic number of geometric graphs and sets without some distance in Euclidean space.Combinatorica 4(1984) 213–218;MR 85m:52008.
Euclidean Ramsey problems
P. Erdös, R. L. Graham, P. Montgomery, B. L. Rothschild, J. H. Spencer & E. G. Straus, Euclidean Ramsey theorems I, II, IIIJ. Combin. Theory Ser. A 14(1973) 341–363Colloq. Math. Soc. János Bolyai 10(1973) 529–557, 559–583;MR 47# 482552 #293552 #2936.
P. Frankl & V. Rödl, All triangles are RamseyTrans. Amer. Math. Soc. 297(1986) 777–779;MR 88d:05018.
P. Frankl & V. Rödl, Forbidden intersectionsTrans. Amer. Math. Soc. 300(1987) 259–286;MR 88m:05003.
P. Frankl & V. Rödl, A partition property of simplices in Euclidean spacesJ. Amer. Math. Soc. 3(1990) 1–7.
R. L. Graham, On partitions of En J. Combin. Theory Ser. A 28(1980) 89–97;MR 81g:05021.
R. L. Graham, Old and new Euclidean Ramsey theorems, [GLMP], 20–30;MR 87b:05021.
R. L. Graham, B. L. Rothschild & J. H. SpencerRamsey TheoryWiley, New York, 1980;MR 82b:05001.
R. Juhász, Ramsey-type theorems in the planeJ. Combin. Theory Ser. A 27(1979) 152–160;MR 81f:05125.
L. Shader, All right triangles are Ramsey in E2!J. Combin. Theory Ser. A 20(1976) 385–389.
Triangles with vertices in sets of a given area
P. Erdös, Some combinatorial, geometric and set theoretic problems in measure theory, inMeasure TheoryOberwolfach, 1983, 321–327; Lecture Notes in Math. 108, Springer, Berlin, 1984.
Sets containing large triangles
J. Bourgain, A Szemerédi type theorem for sets of positive density inR k Israel J. Math. 54(1986) 307–316;MR 87j:11012.
P. Erdös, Some combinatorial, geometric and set theory problems in measure theoryMeasure TheoryOberwolfach 1983, Lecture Notes in Math. 1089, Springer-Verlag, 321–327.
K. J. Falconer, A problem of Erdös on fractal combinatorial geometryJ. Combin. Theory. Ser. A.to appear.
K. J. Falconer & J. M. Marstrand, Sets with positive density at infinity contain all large distancesBull. London Math. Soc. 18(1986) 471–474;MR 87h:28007.
Similar copies of sequences
J. Arias de Reyna, Some results connected with a problem of Erdös IIIProc. Amer. Math. Soc. 89(1983) 291–292;MR 85d:28001.
J. Bourgain, Construction of sets of positive measure not containing an affine image of a given infinite structureIsrael J. Math. 60(1987) 333–344;MR 89g:28004.
S. J. Eigen, Putting convergent sequences into measurable setsStudia Sci. Math. Hungar. 20(1985) 411–412;MR 88f:28003.
P. Erdös, My Scottish Book “problems,” in [Mau], 35–43.
K. J. Falconer, On a problem of Erdös on sequences and measurable setsProc. Amer. Math. Soc. 90(1984) 77–78;MR 85e:28008.
P. Komjáth, Large sets not containing images of a given sequenceCanad. Math. Bull. 26(1983) 41–43;MR 85d:28003.
Unions of similar copies of sets
J. M. Marstrand, On Khinchin’s conjecture about strong uniform distributionProc. London Math. Soc.(3)21(1970) 540–556;MR 45 #185.
J. Haight, A linear set of infinite measure with no two points having integral ratioMathematika 17(1970) 133–138;MR 42 #3046.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1991 Springer Science+Business Media New York
About this chapter
Cite this chapter
Croft, H.T., Falconer, K.J., Guy, R.K. (1991). General Geometric Problems. In: Unsolved Problems in Geometry. Problem Books in Mathematics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0963-8_8
Download citation
DOI: https://doi.org/10.1007/978-1-4612-0963-8_8
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4612-6962-5
Online ISBN: 978-1-4612-0963-8
eBook Packages: Springer Book Archive