Borel Subgroups; Reductive Groups

  • Armand Borel
Part of the Graduate Texts in Mathematics book series (GTM, volume 126)


Throughout this chapter G denotes a connected affine group, and all algebraic groups are understood to be affine.


Weyl Group Parabolic Subgroup Reductive Group Maximal Torus Borel Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapters I to V

  1. 1.
    A. Borel, Groupes linéaires algébriques. Annals of Math. (2)64 (1956), 20–82.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A Borel and T.A. Springer, Rationality properties of linear algebraic groups. Proc. Symp. Pure Math., vol. IX (1966), 26–32.MathSciNetGoogle Scholar
  3. 3.
    A. Borel and T.A. Springer, Rationality properties of linear algebraic groups II, Tohoku Math. Jour. (2)20 (1968), 443–487.MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Borel et J. Tits, Groupes réductifs. Publ. Math. I.H.E.S. 27 (1965), 55–150.MathSciNetGoogle Scholar
  5. 5.
    A. Borel et J. Tits, “Compléments à l’article: Groupes réductifs,” Publ. Math. LH.E.S. 41 (1972), 253 276.Google Scholar
  6. 6.
    A. Borel et J. Tits, “Homomorphismes “abstraits” de groupes algébriques simples,” Annals of Math. 97 (1973), 499–571.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    A. Borel et J. Tits, “Théorèmes de structure et de conjugaison pour les groupes algébriques linéaires;’ C.R. Acad. Sci. Paris 287 (1978), 55–57.MathSciNetMATHGoogle Scholar
  8. 8.
    N. Bourbaki, Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Hermann Paris (1960).Google Scholar
  9. 9.
    N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, 2ème édition, Masson, Paris 1981.Google Scholar
  10. 10.
    N. Bourbaki, Groupes et algèbres de Lie, Chap. VII, VIII, Hermann, Paris 1975.Google Scholar
  11. 11.
    N. Bourbaki, Algèbre Commutative, Chap. 5-7, Hermann, Paris 1964.Google Scholar
  12. 12.
    C. Chevalley, Théorie des groupes de Lie. (a) Tome II: Groupes algébriques, Paris 1951, (b) Tome III: Groupes algébriques, Hermann Paris 1955.Google Scholar
  13. 13.
    C.Chevalley, Séminaire sur la classification des groupes de Lie algébriques (Mimeographed Notes), Paris 1956-58.Google Scholar
  14. 14.
    M. Demazure et P. Gabriel, Groupes algébriques, Tome I, Masson, Paris 1970.MATHGoogle Scholar
  15. 15.
    M. Demazure et.Grothendieck, Schémas en groupes I, II, III, Springer L.N.M. 151, 152, 153, Springer Verlag 1970.Google Scholar
  16. 16.
    G. Fano, Sulle varietà algebriche con un gruppo continuo non integrabile di transformazioni proiettive in sè. Mem. Reale Accad. d. Sci. di Torino (2)46 (1896), 187–218.Google Scholar
  17. 17.
    J. Humphreys, Linear algebraic groups, Grad. Text Math. 21, Springer-Verlag 1975.Google Scholar
  18. 18.
    N. Jacobson, Lie algebras. Interscience Tracts in pure and applied math. 10, New York 1962, Interscience Publ.Google Scholar
  19. 19.
    E. Kolchin, Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear differential equations. Annals of Math. (2)49 (1948), 1–42.MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Kolchin, On certain concepts in the theory of algebraic matric groups. Ibid. 774-789.Google Scholar
  21. 21.
    S. Lang, Algebraic groups over finite fields. Amer. Jour. Math. 87 (1965), 555–563.Google Scholar
  22. 22.
    D. Mumford and J. Fogarty, Geometric Invariant Theory, 2nd enlarged edition, Ergeb. Math. u. Grenzgeb. 34, Springer-Verlag 1982.Google Scholar
  23. 23.
    D. Mumford, The red book of varieties and schemes, Springer L.N.M. 1358, Springer-Verlag 1988.Google Scholar
  24. 24.
    T. Ono, Arithmetic of algebraic tori. Annals of Math. (2)74 (1961), 101–139.CrossRefGoogle Scholar
  25. 25.
    M. Rosenlicht, Some basic theorems on algebraic groups. Amer. Jour. Math. 78 (1956), 401–443.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    M. Rosenlicht, Some rationality questions on algebraic groups. Annali di Mat. (IV)43 (1957). 25–50.MathSciNetGoogle Scholar
  27. 27.
    M. Rosenlicht, On quotient varieties and the affine embedding of certain homogeneous spaces Trans. Amer. Math. Soc. 101 (1961), 211–223.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    M. Rosenlicht, “Questions of rationality for solvable algebraic groups over nonperfect fields” Annali di Mat. (IV) 61 (1962), 97–120.MathSciNetGoogle Scholar
  29. 29.
    J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris 1959.Google Scholar
  30. 30.
    J.-P. Serre, Cohomologie galoisienne. Lect. Notes Math. 5, Springer-Verlag 1965Google Scholar
  31. 31.
    J.-P. Serre, Algèbres de Lie semi-simples complexes. Benjamin New York 1966.MATHGoogle Scholar
  32. 32.
    T.A. Springer, Linear algebraic groups, Progress in Math. 9, Birkhäuser 1981.Google Scholar
  33. 33.
    A. Weil, On algebraic groups and homogeneous spaces. Amer. Jour. Math. 77 (1955), 493–512.MathSciNetMATHCrossRefGoogle Scholar

Additional references for §§23 and 24

  1. [B1]
    A. Borel, Représentations linéaires et espaces homogènes kähleriens des groupes simples compacts, (1954), Coll. Papers I, 392-396, Springer-Verlag 1983.Google Scholar
  2. [B2]
    A. Borel, Properties and linear representations of Chevalley groups, in Seminar on algebraic groups and related finite groups, Lect. Notes Math. 131, 1–55, Springer-Verlag 1955.CrossRefGoogle Scholar
  3. [B3]
    A. Borel, Linear representations of semi-simple algebraic groups, Proc. Symp. Pure Math. 29, Amer. Math. Soc. (1975), 421–439.Google Scholar
  4. [BS]
    A. Borel et J-P. Serre, Théorèmes definitude en cohomologie galoisienne, Comm. Math. Helv. 39 (1964), 111–164.MathSciNetMATHCrossRefGoogle Scholar
  5. [C]
    C. Chevalley, Certains schémas de groupes simples, Sém. Bourbaki 1960/61, Exp. 219.Google Scholar
  6. [D]
    J. Dieudonné, La géométrie des groupes classiques, Erg. d. Math. u.i. Grenzgeb. (N.F.) 5, Springer-Verlag 1955.Google Scholar
  7. [He]
    S. Helgason, Differential geometry and symmetric spaces, Acad. Press 1962.Google Scholar
  8. [Ho]
    G. Hochschild, The structure of Lie groups, Holden-Day, San Francisco 1965.Google Scholar
  9. [Hu]
    J. Humphreys, Ordinary and modular representations of Chevalley groups, Lect. Notes Math. 528, Springer-Verlag 1976.Google Scholar
  10. [IM]
    N. Iwahori and H. Matsumoto, On some Bruhat decompositions and the structure of the Hecke ring of p-adic Chevalley groups, Publ. Math. I.H.E.S. 25 (1965), 5–48.MathSciNetMATHGoogle Scholar
  11. [J]
    J.C. Jantzen, Representations of algebraic groups, Acad. Press 1987.Google Scholar
  12. [Ta]
    M. Takeuchi, A hyper algebraic proof of the isomorphism and isogeny theorems for reductive groups, J. Algebra 85 (1983), 179–196.MathSciNetMATHCrossRefGoogle Scholar
  13. [Til]
    J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pur. Math. IX, Amer. Math. Soc. 1966, 32–62.Google Scholar
  14. [Ti2]
    J. Tits, Formes quadratiques, groupes orthogonaux et algèbres de Clifford, Inv. Math. 5 (1968), 19–41.MathSciNetMATHCrossRefGoogle Scholar
  15. [Ti3]
    J. Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. f. reine u. angew. Math. 247 (1971), 196–220.MathSciNetMATHGoogle Scholar
  16. [W]
    A. Weil, Algebras with involution and the classical groups, J. Indian Math. Soc. 24 (1960), 589–623.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Armand Borel
    • 1
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations