Advertisement

Introduction to Edwards, Lindman, and Savage (1963) Bayesian Statistical Inference for Psychological Research

  • William H. DuMouchel
Part of the Springer Series in Statistics book series (SSS)

Abstract

The 1963 paper by Edwards, Lindman, and Savage introduces Bayesian inference to practically minded audiences. It provides a brief history and definition of Bayesian methods and explicates some of the key implications of Bayesian theory for statistical practice. In addition, the paper develops two key Bayesian topics further than had been previously done: the principle of “stable estimation” and the comparison of the Bayesian and classical approaches to “sharp null hypotheses.”

Keywords

Prior Distribution Bayesian Inference Subjective Probability Stable Estimation Prior Opinion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure, Ann. Inst. Statist. Math., Tokyo, 30, 9–14.MathSciNetMATHCrossRefGoogle Scholar
  2. Atkinson. A.C. (1978). Posterior probabilities for choosing a regression model, Bio-metrika, 65, 39–48.MATHGoogle Scholar
  3. Berger, J.O., and Delampady, M. (1987). Testing precise hypotheses. Statist. Sci., 2, 317–352 (with discussion).MathSciNetMATHCrossRefGoogle Scholar
  4. Berry, D.A. (1972). Letter to the editor. Amer. Statist. 26, 47.Google Scholar
  5. Bernardo, J.M. (1979). Reference posterior distributions Bayesian inference, J. Roy. Statist. Soc., Ser. B, 41, 113–147 (with discussion).MathSciNetMATHGoogle Scholar
  6. Bernardo, J.M. (1980). A Bayesian analysis of classical hypothesis testing, in Bayesian Statistics: Proceedings of First International Meeting (J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, eds.). University Press, Valencia, Spain, pp. 605–647 (with discussion).Google Scholar
  7. Bernardo, J.M., DeGroot, M.H., Lindley, D.V., and Smith. A.F.M. (eds.) (1980). Bayesian Statistics: Proceedings of First International Meeting. University Press, Valencia, Spain.MATHGoogle Scholar
  8. Bernardo, J.M., DeGroot, M.H, Lindley, D.V, and Smith. A.F.M. (eds.) (1985). Bayesian Statistics, Vol. 2. North Holland, Amsterdam.MATHGoogle Scholar
  9. Bernardo, J.M, DeGroot, M.H, Lindley, D.V, and Smith. A.F.M. (eds.) (1988). Bayesian Statistics, Vol. 3. Oxford University Press.Google Scholar
  10. Birnbaum, A. (1962). On the foundations of statistical inference, J. Amer. Statist. Assoc., 57, 269–306.MathSciNetMATHCrossRefGoogle Scholar
  11. Box, G.E.P. and Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, Mass.MATHGoogle Scholar
  12. de Finetti, B. (1930). Fondamenti logici del ragionamento probabilistico, Boll. Un. mat. Ital, Ser. A, 9, 258–261.MATHGoogle Scholar
  13. de Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives, Ann. Inst. Henri Poincaré, 7, 1–68.Google Scholar
  14. de Finetti, B. (1972). Probability, Induction and Statistics. Wiley, New York, pp. v–vi.MATHGoogle Scholar
  15. Dempster, A.P. (1973). The direct use of likelihood for significance testing, Proceedings of Conference on Foundational Questions in Statistical Inference (Barndorff-Nielson, P. Blaesild, and G. Schou, eds.). University of Aarhus, pp. 335–352.Google Scholar
  16. Diaconis, P. and Friedman, D. (1986). On the consistency of Bayes estimates, Ann. Statist. 14, 1–67 (with discussion).MathSciNetMATHCrossRefGoogle Scholar
  17. Dubins, L.E, and Savage, L.J. (1965). How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw-Hill, New York.MATHGoogle Scholar
  18. Dubins, L.E, (1976). Preface to Inequalities for Stochastic Processes: How to Gamble If You Must by L.E. Dubins and L.J. Savage. Dover, New York.Google Scholar
  19. DuMouchel, W. (1988). A Bayesian model and a graphical elicitation procedure for the problem of multiple comparisons, in Bayesian Statistics, vol. 3 (Bernardo et al. eds.). Oxford University Press.Google Scholar
  20. DuMouchel, W, and Harris, J.E. (1983). Bayes methods for combining the results of cancer studies in humans and other species, J. Amer. Statist. Assoc, 78, 293–315 (with discussion).MathSciNetMATHCrossRefGoogle Scholar
  21. Edwards, W. (1962). Subjective probabilities inferred from decisions, Psychol. Rev., 69, 109–135.CrossRefGoogle Scholar
  22. Ericson, W.A. (ed.) (1981) The Writings of Leonard Jimmie Savage—A Memorial Selection. American Statistical Association and Institute of Mathematical Statistics, Washington.Google Scholar
  23. Fienberg, S., and Zellner, A. (eds.) (1975). Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage. North-Holland, Amsterdam, pp. 3–4.MATHGoogle Scholar
  24. Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd, London.Google Scholar
  25. Friedman, M., and Savage, L.J. (1948). The utility analysis of choices involving risk, J. Political Economy, 56, 279–304.CrossRefGoogle Scholar
  26. Friedman, M., and Savage. L.J. (1952). The expected-utility hypothesis and the measurement of utility, J. Political Economy, 60, 463–474.CrossRefGoogle Scholar
  27. Good, I.J. (1950). Probability and the Weighing of Evidence. Hafner, New York.MATHGoogle Scholar
  28. Good, I.J. (1960). Weight of evidence, corroboration, explanatory power, information and the utility of experiments, J. Roy. Statist. Soc., Ser. B, 22, 319–331.MathSciNetMATHGoogle Scholar
  29. Halmos, P.R., and Savage, L.J. (1949). Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math Statist. 20, 225–241.MathSciNetMATHCrossRefGoogle Scholar
  30. Iyengar, S. and Greenhouse, J.B. (1988). Selection models and the file drawer problem, Statist. Sci., 3, 109–135 (with discussion).CrossRefGoogle Scholar
  31. Jaynes, E.T. (1980). Discussion of the paper by Bernardo, in Bayesian Statistics: Proceedings of First International Meeting (J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, eds.). University Press, Valencia, Spain, pp. 618–629.Google Scholar
  32. Jeffreys, H. (1931). Scientific Inference. Cambridge University Press, England.Google Scholar
  33. Jeffreys, H. (1939). Theory of Probability. Clarendon Press, Oxford.Google Scholar
  34. Kahneman, D., and Tversky, A. (1973). On the psychology of prediction, Psychol. Rev., 80, 237–251.CrossRefGoogle Scholar
  35. Kanji, G.K. (ed.) (1983). Proceedings of the 1982 I.O.S. Annual Conference on practical Bayesian statistics, The Statistician, 32, 1–278.Google Scholar
  36. Kruskal, W. (1978). Leonard Jimmie Savage, in International Encyclopedia of Statistics (W. Kruskal, and J. Tanur, eds.). The Free Press, New York, pp. 889–892.Google Scholar
  37. Lindley, D.V. (1957). A statistical paradox, Biometrika, 44, 187–192.MathSciNetMATHGoogle Scholar
  38. Lindley, D.V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint. Cambridge University Press.Google Scholar
  39. Lindley, D.V. (1979). Savage, Leonard Jimmie, in International Encyclopedia of the Social Sciences, 18, Biographical Supplement (D.L. Sills. ed.). The Free Press, New York.Google Scholar
  40. Lindley, D.V. (1980). L.J. Savage—His work in probability and statistics, Ann. Statist., 8, 1–24 [reprinted in The Writings of Leonard Jimmie Savage—A Memorial Selection (W.A. Ericson, ed.). American Statistical Association, Washington 1981.MathSciNetMATHCrossRefGoogle Scholar
  41. Lindley, D.V. (1988). Savage, Leonard J. in Encyclopedia of Statistical Sciences, Vol. 8 (S. Kotz, N. Johnson, and C.B. Read eds.). Wiley-Interscience, New York.Google Scholar
  42. Lindley, D.V. and Smith, A.F.M. (1972). Bayes estimates for the linear model, J. Roy. Statist. Soc., Ser. B, 34, 1–41 (with discussion).MathSciNetMATHGoogle Scholar
  43. Raiffa, H., and Schlaifer, R. (1961). Applied Statistical Decision Theory. Harvard University Graduate School of Business Administration, Cambridge, Mass.Google Scholar
  44. Ramsey, F.P. (1931). Truth and probability (1926) and Further considerations (1928), in The Foundations of Mathematics and Other Essays. Harcourt Brace, New York.Google Scholar
  45. Rosenthal, R (1979). The “file drawer problem” and tolerance for null results, Psychol. Bull, 86, 638–641.CrossRefGoogle Scholar
  46. Savage, L.J. (1951). The theory of statistical decision, J. Amer. Statist. Assoc, 46, 55–67.MATHCrossRefGoogle Scholar
  47. Savage, L.J. (1954). The Foundations of Statistics. Wiley, New York.MATHGoogle Scholar
  48. Savage, L.J. (1961). The foundations of statistics reconsidered, in Proceedings of 4th Berkeley Symposium on Mathematical and Statistical Probability, Vol. 1. University of California Press, Berkeley, pp. 575–586.Google Scholar
  49. Savage, L.J. (1972). The Foundations of Statistics, 2nd ed. Dover, New York.MATHGoogle Scholar
  50. Savage, L.J. (1976). On rereading Fisher. J.W. Pratt ed., Ann Statist., 441–500.Google Scholar
  51. Shafer, G. (1982). Lindley’s paradox, J. Amer. Statist. Assoc, 77, 325–351 (with discussion).MathSciNetMATHCrossRefGoogle Scholar
  52. Smith, A.F.M., and Spiegelhalter, D.J. (1980). Bayes factors and choice criteria for linear models, J. Roy. Statist. Soc., Ser. B, 42, 213–220.MathSciNetMATHGoogle Scholar
  53. von Winterfeldt, D., and Edwards, W. (1986). Decision Analysis and Behavioral Research. Cambridge University Press.Google Scholar
  54. Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. Wiley, New York.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • William H. DuMouchel
    • 1
  1. 1.BBN Software ProductsUSA

Personalised recommendations