Skip to main content

Foresight: Its Logical Laws, Its Subjective Sources

  • Chapter

Part of the Springer Series in Statistics book series (PSS)

Abstract

The word “equivalent” of the original has been translated throughout as “exchangeable.” The original term (used also by Khinchin) and even the term “symmetric” (used by Savage and Hewitt) appear to admit ambiguity. The word “exchangeable,” proposed by Fréchet, seems expressive and unambiguous and has been adopted and recommended by most authors, including de Finetti.

Keywords

  • Random Quantity
  • Subjective Source
  • Complete Class
  • Admissible Opinion
  • Subjectivistic Point

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-0919-5_10
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-1-4612-0919-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bertrand (J.) Calcul des probabilités, Paris, 1889.

    Google Scholar 

  2. Bridgman (P.) The Logic of Modem Physics, New York, 1927.

    Google Scholar 

  3. Cantelli (F.P.) “Sulla probabilità come limite delia frequenza,” Rendiconti Reale Accademia Nazionale dei Lincei, Series 5, Vol. XXVI, 1st Semester (1917).

    Google Scholar 

  4. — “Una teoria astratta del calcolo delia probabilità,” Giornale dellIstituto Italiano degli Attuari, Vol. III-2(1932).

    Google Scholar 

  5. — “Considérations sur la convergence dans le calcul des probabilités,“ Annales de l’ lnstitut Henri Poincaré, Vol. V, fasc. 1 (1935).

    Google Scholar 

  6. Castelnuovo (G.) Calcolo delie probabilità, Zanichelli, Bologna, 1925.

    Google Scholar 

  7. — “Sul problema dei momenti,” Gior. 1st. Ital. Attuari, Vol. 1-2(1930).

    Google Scholar 

  8. — “Sur quelques problèmes se rattachant au calcul des probabilités,” Ann. Inst. H. Poincaré, Vol. III, fasc. 4 (1933).

    Google Scholar 

  9. D ö rge (K.) “Ueber das Anwendung der Wahrscheinlichkeitsrechnung und das Induktionsproblem,” Deutsche Mathematik, 1 (1936).

    Google Scholar 

  10. Frécnet (R.M.) “Sur l’extension du théorème des probabilités totales au cas d’une suite infinie d’événements,” Rendiconti Reale Istituto Lombardo di Scienze Lettere ed Arte, Series 2, Vol. LXIII, first note, fasc. 11-15, second note, fasc. 16-18(1930).

    Google Scholar 

  11. Fréchet (R.M.) and Le calcul des probabilitésàla portée de tous, Dunod, Halbwachs (M.) Paris, 1925.

    Google Scholar 

  12. Glivenko (V.) “Sulla determinazione empirica delie leggi di probabilità,” Gior. 1st. Ital Attuari, Vol. IV-1 (1933).

    Google Scholar 

  13. Hosiasson (J.) “La théorie des probabilités est-elle une logique généralisée?” Vol. IV of Actes du Congrès International de Philosophie Scientifique (1935), Act. Scient. Indust. #391, Hermann, Paris, 1936.

    Google Scholar 

  14. Khinchin (A.) “Sur les classes d’événements équivalentes,” Mathematičeskii Sbornik, Recueil. Math. Moscou, 39-3 (1932).

    Google Scholar 

  15. — “Remarques sur les suites d’événements obéissant à la loi des grandes nombres,” Ibid.

    Google Scholar 

  16. Kolmogorov (A.) Foundations of the Theory of Probability, 2nd English edition (translation edited by N. Morrison), New York, Chelsea, 1956.

    Google Scholar 

  17. — “Sulla determinazione empirica di una legge di distribuzione,” Gior. 1st. Ital. Attuari, Vol. IV-1 (1933).

    Google Scholar 

  18. von Kries (J.) Die Prinzipien der Wahrscheinlichkeitsrechnung, Freiburg i.b., 1886.

    Google Scholar 

  19. Lévy (P.) Calcul des probabilités, Paris, Gauthier-Villars, 1925.

    Google Scholar 

  20. Lomnicki (A.) “Nouveaux fondements de la théorie des probabili tés,“ Fundamenta Mathematica, Vol. 4 (1923)

    Google Scholar 

  21. Lukasiewicz (J.) “Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls,” Comptes Rendus Soc. Sci. Lett. Varsovie, Classe III, Vol. XXIII (1930).

    Google Scholar 

  22. Mazurkiewicz (S.) “Zur Axiomatik der Wahrscheinlichkeitsrechnung,” C. R. Soc. Sci. Lett. Varsovie, Classe III, Vol. XXV (1932).

    Google Scholar 

  23. Medolaghi (P.) “La logica mathematica e il calcolo delle probabilit à, ” Bolletino Assoc. Ital. Attuari, 18 (1907).

    Google Scholar 

  24. von Mises (R.) Probability, Statistics and Truth, 2nd revised English edition (prepared by H. Geringer), New York, Macmillan, 1957.

    Google Scholar 

  25. — “Théorie des probabilités: fondements et applications,” Ann. Inst. H. Poincaré, Vol. III, fasc. 2 (1932).

    Google Scholar 

  26. Pareto (V.) Manuel d’économie politique, Paris, Giard et Brière, 1909.

    Google Scholar 

  27. Poincaré (H.) Science and Hypothesis (translated by WJ. Greenstreet), Chapter: The Calculus of Probability, New York, Dover, 1952.

    Google Scholar 

  28. Reichenbach (H.) The Theory of Probability (English edition translated by Ernest Hutten and Maria Reichenbach), Berkeley, 1949.

    Google Scholar 

  29. — “Die Induktion als Methode der wissenschaftliche Erkenntnis,” Vol. IV of Actes du Congrès Int. de Phil. Scient. (1935), Act Scient. Indust. #391, Hermann, Paris, 1936.

    Google Scholar 

  30. — “Wahrscheinlichkeitslogik als form wissenschaftlichen Denkens,” Ibid.

    Google Scholar 

  31. “Sui passagi al limite nel calcolo delia probabilità,” Rend. R. Ist. Lombardo, Series 2, Vol. LXIII, fasc. 2-5 (1930).

    Google Scholar 

  32. “A proposito dell’estensione del teorema delle probabilità totali alle classi numerabili,” ibid., fasc. 11-15 (1930).

    Google Scholar 

  33. “Problemi determinati e indeterminati nel calcolo delle probabilità,” Rend. R. Acc. Naz. Lincei, Series 6, Vol. XII, fasc. 9 (Nov., 1930).

    Google Scholar 

  34. “Fondamenti logici del ragionamento probabilistico,” Boll. Un. Mat. Ital, Vol. IX-5 (Dec, 1930).

    Google Scholar 

  35. “Ancora sull’estensione alle classi numerabili del teorema delle probabilità totali,” Rend. R. 1st. Lombardo, Series 2, Vol. LXIII, fasc. 1-18 (1930).

    Google Scholar 

  36. “Funzione caratteristica di un fenomeno aleatorio,” Memorie R. Acc. Naz. Lincei, Series 6, Vol. IV, fasc. 5 (1930).

    Google Scholar 

  37. “Probabilismo: Saggio critico sulla teoria delie probabilit à e sul valore della scienze,” Bibiioteca di Filosofia diretta da Antonio Aliotta, Naples, Perrella(1931).

    Google Scholar 

  38. “Sul significato soggettivo della probabilit à, ” Fund. Math., Vol. 17, Warsaw (1931).

    Google Scholar 

  39. “Sui fondamenti logici del ragionamento probabilistico,” Atti. Soc. Ital. Progr. Scienze, Riunione Bolzano-Trento del 1930, Vol. 11, Rome (1931).

    Google Scholar 

  40. “Le leggi differenziali e 1a rinunzia al determinismo,” Rend. Semin. Mat. R. Univ. Roma, Series 2, Vol. VII (1931).

    Google Scholar 

  41. “Probabilit ä fuori dagli schemi di urne,” Period di Mat., Series 4, Vol. XIII (1932).

    Google Scholar 

  42. “Funzione caratteristica di un fenomeno aleatorio,” Att. Congr. Int. Mathem., Bologna, 1928, Vol. 6, Bologna, Zanichelli ed. (1932).

    Google Scholar 

  43. “Sull’approssimazione empirica di una legge di probabilit à, ” Gior. 1st. Ital. Attuari, Vol. 4-3 (1933).

    Google Scholar 

  44. “Classi di numeri aleatori equivalenti. La legge dei grandi numeri nel caso dei numeri aleatori equivalenti. Sulla legge di distrubuzione dei valori in una successione di numeri aleatori equivalenti,” Rend. R. Acc. Naz. Lincei, Series 6, Vol. XVIII, 2e sem., fasc. 3-4 (1933).

    Google Scholar 

  45. “Sul concetto di probabilit à, ” Riv. Ital. Statist., Vol. 1 (1933).

    Google Scholar 

  46. “Indipendenza stocastica ed equivalenza stocastica,” Atti. Soc. Ital. Prog. Scienze, Riunione Bari del 1933, Vol. II, Rome (1934).

    Google Scholar 

  47. Review of Reichenbach, H. [XXIX] Zentralblatt für Mathematik und ihre Grenzegebiete, 10-8 (1935).

    Google Scholar 

  48. “II problema della perequazione,” Atti. Soc. Ital. Progr. Scienze, Riunione Napoli del 1934, Vol. II, Rome (1935).

    Google Scholar 

  49. (In collaboration with M.M. Jacob). “Sull’integrale di Stieltjes-Riemann,” Gior. Ist. hol. Attuari, Vol. VI-4 (1935).

    Google Scholar 

  50. “La logique de la probabilité” (Communication to the Congrès Int. de Philosophie Scient., Paris, 1935), Act. Scient. Indus. #391, Hermann, 1936.

    Google Scholar 

  51. “Les probabilités nulles,” Bull. Sci. Math., Second Scries, 60 (1936).

    Google Scholar 

  52. “Statistica e probabilit à nella concezione di R. von Mises,” Suppl. Statis. Nuovi Probl, Vol. II-3 (1936).

    Google Scholar 

  53. “Riflessioni teoriche sulle assicurazioni elementari,” Vol. 2 of Comptes Rendus du Onzième Congrès International d’Actuaires. (Paris, June 17-24, 1936), Gauthier-Villars, Paris, 1937.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Finetti, B. (1992). Foresight: Its Logical Laws, Its Subjective Sources. In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0919-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0919-5_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94037-3

  • Online ISBN: 978-1-4612-0919-5

  • eBook Packages: Springer Book Archive