Some Nonlinear Problems in Anisotropic Systems

  • P. E. Cladis
  • W. van Saarloos
Part of the Partially Ordered Systems book series (PARTIAL.ORDERED)


Although liquid crystals are nonlinear systems, their use to nonlinear science remains largely unexploited. A possible contributing factor is that the physics of liquid crystals has evolved over the past 10 to 15 years as a multidisciplinary tributary to the main streams of physics, chemistry, and biology. A special vocabulary has evolved to describe many of the physical properties of these systems. Frequently liquid crystal usage is at odds with main-stream usage, but, more often, it is a question of new words coined to describe liquid crystal properties that have no counterpart in other condensed systems


Liquid Crystal Nonlinear Problem Nematic Liquid Crystal Line Defect Marginal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Lam, Mol. Cryst. Liq. Cryst. 155, 531 (1988). In this paper, Lam discusses how W. Little’s exciton theory for high T, materials may be realized by discotic or bowlic liquid crystals. See also: Superconductor Week, October 19, 1987, p. 4Google Scholar
  2. 2.
    H. R. Brand and M. Doria, Phys. Rev. B 37, 9722 (1988). In this paper, these authors discuss some consequences for a superconductor with a nematic-like order parameterGoogle Scholar
  3. 3.
    P. E. Cladis, T. Garel, and P. Pieranski, Phys. Rev. Lett. 57, 2841 (1986)CrossRefADSGoogle Scholar
  4. 4.
    P. E. Cladis and M. Kléman, J. Phys. (Paris) 33, 591 (1972)CrossRefGoogle Scholar
  5. 5.
    See, e.g., P. E. Cladis (unpublished, 1987), where a flexoelectric effect is used to locally unwind a helical structure without introducing defects; A. Saupe (unpublished, 1977), who shows that by escaping into the third dimension, a cholesteric helix may be completely unwound without introducing defects; P. E. Cladis, A. E. White, and W. F. Brinkman, [J. Phys. (Paris) 40, 325 (1979)] who show that, to minimize its elastic energy, an S = 2 defect with a core region that has escaped into the third dimension rotates with the opposite handedness to that given by the microscopic chiralityGoogle Scholar
  6. 6.
    P. E. Cladis, Y. Couder, and H. R. Brand, Phys. Rev. Lett. 55, 2945 (1985). Also, Y. Couder et al. (unpublished)CrossRefADSGoogle Scholar
  7. 7.
    W. F. Brinkman and P. E. Cladis, Physics Today 35, 48 (1982)CrossRefADSGoogle Scholar
  8. 8.
    P. E. Cladis, Phys. Rev. Lett. 28, 1629 (1972)CrossRefGoogle Scholar
  9. 9.
    V. G. Kamensky, Sov. Phys. JETP 60, 723 (1984) [Zh. Eksp. Teor. Fiz. 87, 1262 (1984)]Google Scholar
  10. 10.
    Frederick J. Almgren and Elliot H. Lieb, Bull. Am. Math. Soc. 17, 304 (1987); Annals of Math. (submitted)MATHCrossRefGoogle Scholar
  11. 11.
    C. Williams, P. Pieranski, and P. E. Cladis, Phys. Rev. Lett. 29, 90 (1972)CrossRefADSGoogle Scholar
  12. 12.
    J. L. Ericksen, ASME Symposium, Rivlin Anniversary Volume, edited by M. Carroll (1988)Google Scholar
  13. 13.
    P. E. Cladis, Philos. Mag. 29, 641 (1974)CrossRefADSGoogle Scholar
  14. 14.
    See, e.g., Solitons, edited by S. E. Trullinger, V. E. Zakharov, and V. L. Prokovsky (North Holland, Amsterdam, 1986)Google Scholar
  15. 15.
    See, for example, M. Büttiker, in Structure, Coherence and Chaos in Dynamical Systems, edited by P. L. Christiansen and R. D. Parmentier (Manchester University, Manchester, 1987); M. A. Collins, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1983)Google Scholar
  16. 16.
    F. Brochard, J. Phys. (Paris) 33, 607 (1972)CrossRefGoogle Scholar
  17. 17.
    See, e.g., G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983); E. Ben-Jacob, H. R. Brand, G. Dee, L. Kramer, and J. S. Langer, Physica D 14, 348 (1985), and W. van Saarloos, Phys. Rev. A37, 211 (1988) and references therein. The first application of marginal stability to liquid crystals was made by L. Lin, C. Q. Shu, and G. Xu, J. Stat. Phys. 39, 633 (1985)Google Scholar
  18. 18.
    A. C. Scott, Neurophysics (Wiley, New York, 1977); Xin-yi Wang (also Wang Xin-yi), Phys. Lett. A 112, 402 (1985); Phys. Rev. A. 32, 3126 (1985)Google Scholar
  19. 19.
    P. E. Cladis, W. van Saarloos, P. L. Finn, and A. R. Kortan, Phys. Rev. Lett. 58, 222 (1987)CrossRefADSGoogle Scholar
  20. 20.
    G. N. Taylor and F. J. Kahn, J. Appl. Phys. 45, 4330 (1974)CrossRefADSGoogle Scholar
  21. 21.
    Elastic forces do not play a significant role in this initial reorientation that takes place in a time of order γ/εa E 2 with γ the appropriate combination of viscosities damping the splay-bend deformation. In the regime studied here, this is about a few milliseconds agreeing with the experimental observationsGoogle Scholar
  22. 22.
    This picture is supported by a more detailed stability analysis. To the left of the line defect, the director approaches the x-independent profile θ 0(y) given by Eq. (4.12). On substituting θ = θ 0(y + δθ(y) exp (−ωt + kx), (k > 0)and linearizing,is found to obey an equation of Schrödinger type with w playing the role of the energy eigenvalue. With the use of arguments similar to those discussed by A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin [Proc. IEEE 61, 1443 (1973)], it can then be shown that w > 0, so the region to the left of the line is linearly stableGoogle Scholar
  23. 23.
    As we discussed later, in the absence of fields, we have F exc ∼ ln(ℓ) and Eq. (4.15) gives ℓ2 ∼ (tt 0) for the annihilation of two defectsGoogle Scholar
  24. 24.
    The energy dissipation per unit time and line length is, according to Ref. 23,∫γ(∂θ/∂t)2 dxdy = c 2γ∫(∂θ/∂x)2 dxdy. Equating this to the change in elastic energy per unit time \(( = cd{F_{exc}}/d\ell {\text{)}}\) yields \(b = \tfrac{1}{2}\smallint {(\partial \theta /\partial x)^2}dx dy\). Using the expression for θnear a \(- \tfrac{1}{2}\) defect, θ = −φ/2, gives \(b = \tfrac{1}{2}\smallint _{{r_c}}^\xi dr \smallint d\phi ({\sin ^2}\phi /4r) = (\pi /8)\ln (\xi /{r_c})\), where r, is the core size. From the formula after Eq. (4.10) we get £ ∼ 6000 Å for V = 50 Volts; taking r c = 28 Å, we then get b ∼ 2.1. This is expected to be an overestimate because the effect of the electric field is to decrease in the expression by b, and because the core size may be several molecular dimensions not just oneGoogle Scholar
  25. 25.
    K. Skarp, S. Lagerwall, and B. Stebler, Mol. Cryst. Liq. Cryst. 60, 215 (1980)CrossRefGoogle Scholar
  26. 26.
    P. G. de Gennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974)Google Scholar
  27. 27.
    The field 0(y) in Eq. (4.10) away from the defect is a combination of splay and bend; the analysis leading to Eq. (4.14) can be extended to the case Kl # K3. For 5CB, the resulting correction is about 3%Google Scholar
  28. 28.
    In this regard, we note that in Ref. 24 a larger value of the core size would give a lower estimate of b, e.g., rc = 60 A gives b ti 1.8Google Scholar
  29. 29.
    Yu. A. Dreizin and A. M. Dykhne, Zh. Eksp. Teor. Fiz. 61, 2140 (1971) [Sov. Phys. JETP 34, 1140 (1972)]Google Scholar
  30. 30.
    A. S. Sonin, A. N. Chuvyrov, A. A. Sobachkin, and V. L. Ovchinnikov, Fiz. Tverd. Tela 18, 3099 (1976) [Soy. Phys. Solid State 18, 1805 (1976)]Google Scholar
  31. 31.
    R. Pindak, C. Y. Young, R. B. Meyer, and N. A. Clark, Phys. Rev. Lett. 45, 1193 (1980); see also Chap. 7 of this volumeCrossRefADSGoogle Scholar
  32. 32.
    P. E. Cladis, H. R. Brand, and P. L. Finn, Phys. Rev. A 28, 512 (1983). The name helielectric was first proposed in: H. R. Brand, P. E. Cladis, and P. L. Finn, Phys. Rev. A 31, 361 (1985)Google Scholar
  33. 33.
    H. R. Brand and P. E. Cladis, Mol. Cryst. Liq. Cryst. 114, 207 (1984)CrossRefGoogle Scholar
  34. 34.
    S. Kai, M. Nomiyama, T. Takahashi, and M. Imasaki, Jpn. J. Appl. Phys. 26, L1831 (1987)CrossRefADSGoogle Scholar
  35. 35.
    N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899 (1980)CrossRefADSGoogle Scholar
  36. 36.
    See, e.g., R. B. Meyer, Mol. Cryst. Liq. Cryst. 40, 33 (1977)CrossRefGoogle Scholar
  37. 37.
    M. Press and A. Arrott, J. Phys (Paris) 37, 387 (1976)CrossRefGoogle Scholar
  38. 38.
    D. G. Aronson and H. F. Weinberger, Adv. Math. 30, 33 (1978)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    J. E. Maclennan, M. A. Handschy, and N. A. Clark, Phys. Rev. A 34, 3554 (1986)CrossRefADSGoogle Scholar
  40. 40.
    P. E. Cladis and W. van Saarloos (unpublished)Google Scholar
  41. 41.
    B.D. Coleman (unpublished, 1986)Google Scholar
  42. 42.
    See, e.g., J. Geicke, Phys. Lett. A 111, 10 (1985)CrossRefGoogle Scholar
  43. 43.
    See, e.g., J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    This way of obtaining an exact solution is similar to the one used by A. Saul and K. Showalter in Oscillations and Traveling Waves in Chemical Systems, edited by R. J. Field and M. Burger (Wiley, New York, 1985)Google Scholar
  45. 45.
    J. L. Ericksen, Kolloid Z. 173 117 (1960); Arch. Rat. Mech. Anal. 4, 231 (1960); 9, 371 (1962)Google Scholar
  46. 46.
    F. M. Leslie, Q. J. Mech. Appl. Math. 19, Pt. 3–357 (1966)Google Scholar
  47. 47.
    O. Parodi, J. Phys. (Paris) 31, 58 (1970). Parodi’s relation, rye = as—as = as + a2, is an Onsager relation for the Ericksen—Leslie stress tensorGoogle Scholar
  48. 48.
    P. E. Cladis and S. Torza, Phys. Rev. Lett. 35, 1283 (1975)CrossRefADSGoogle Scholar
  49. 49.
    P. E. Cladis and S. Torza, Colloid Interface Sci. 4, 487 (1976)Google Scholar
  50. 50.
    P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A 6, 2401 (1979)CrossRefADSGoogle Scholar
  51. 51.
    H. R. Brand and H. Pleiner, J. Phys. (Paris) 41, 553 (1980)MathSciNetCrossRefGoogle Scholar
  52. 52.
    H. R. Brand and H. Pleiner, J. Phys. (Paris) 43, 853 (1982)MathSciNetGoogle Scholar
  53. 53.
    S. Diele, H. Hartung, P. Ebeling, D. Vetters, H. Kruger, and D. Demus, in Advances in Liquid Crystal Research and Applications, edited by L. Bata (Pergamon, Oxford and Akedemiai Kiado, Budapest, 1980), p. 39Google Scholar
  54. 54.
    J. J. Benattar, F. Moussa, and M. Lambert, J. Chim. Phys. 80, 99 (1983)Google Scholar
  55. 55.
    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 375Google Scholar
  56. 56.
    C. Y. Young, R. Pindak, N. A. Clark, and R. B. Meyer, Phys. Rev. Lett. 40, 773 (1978)CrossRefADSGoogle Scholar
  57. 57.
    See, e.g., L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison Wesley, Reading, 1959)Google Scholar
  58. 58.
    M. Lowe and J. P. Gollub, Phys. Rev. A 31, 3893 (1985)CrossRefADSGoogle Scholar
  59. 59.
    W. Saarloos and M. Grant [Phys. Rev B 37, 2274 (1988)] for a more detailed discussion and referencesCrossRefADSGoogle Scholar
  60. 60.
    I. Rehberg, S. Rasenat, and V. Steinberg, Phys. Rev. Lett. 62, 756 (1989). See also: W. Zimmermann, MRS Bulletin 16, 46 (1991)Google Scholar
  61. 61.
    P. Oswald, J. Bechhoefer, and A. Libchaber, Phys. Rev. Lett. 58, 2318 (1987); P. Oswald, J. Bechhoefer, and F. Melo, MRS Bulletin 16, 38 (1991)Google Scholar
  62. 62.
    A. Buka, P. Palffy-Muhoray, and Z. Racz, Phys. Rev. A 36, 3984 (1987); A. Buka and P. Palffy-Muhoray, Phys. Rev. A 36, 1527 (1987); S. Arora, A. Buka, P. Palffy-Muhoray, Z. Racz, and R. Vora, Europhys. Lett. 7(1), 43 (1988)Google Scholar
  63. 63.
    No systematic study has yet been made of this interesting possibility. However, E. B. Sirota, P. S. Pershan, L. B. Sorenson, and J. Collet [Phys. Rev. Lett. 55, 2039 (1985)] found a continuous decrease as a function of temperature, in the correlation length between layers as the smectic G phase is approached through the smectic F phase. Far from the G phase, the layer correlation length is short range (about one layer thick) and is about the thickness of the film at the transition temperature. (See also Chap. 7.)Google Scholar
  64. 64.
    B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett. 32, 292 (1974); B. I. Halperin and T. C. Lubensky, Solid State Commun. 14, 997 (1974)Google Scholar
  65. 65.
    M. A. Anisimov, V. P. Voronov, E. E. Gorodetskii, V.E. Podneks, and F. Eksp. Teor. Fiz. 45, Kholmudorov, JETP Lett. 45, 425 (1987) [Pisma. Zh. 336 (1987)]Google Scholar
  66. 66.
    J. Thoen, H. Marynissen, and H. van Dael, Phys. Rev.Lett. 52, 204 (1984) Thoen, and Phys. Rev. A 26, 2886 (1982); H. Marynissen, J. Dael, Mol. Cryst. Liq. Cryst. 124, 195 (1985)ADSGoogle Scholar
  67. 67.
    B. M. Ocko, R. J. Birgeneau, and J. D. Litster, Z. Phys. 62, 487 (1986)CrossRefGoogle Scholar
  68. 68.
    P. E. Cladis, W. van Saarloos, D. A. Huse, J. S. Patel, J. W. Goodby, and P. L. Finn, Phys. Rev. Lett. 62, 1764 (1989); M. A. Anisimov, P. E. Cladis, E. E. Grorodetskii, D. A. Huse, V. E. Podneks, V. G. Taratuta, W. van Saarloos, and V. P. Voronov, Phys. Rev. A 41, 6749 (1990); P. E. Cladis, J. Stat. Phys. 62, 899 (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • P. E. Cladis
  • W. van Saarloos

There are no affiliations available

Personalised recommendations