The Extended (or Covariant) Phase Space and Classical Fields

  • Anadijiban Das
Part of the Universitext book series (UTX)

Abstract

In Hamiltonian mechanics and the subsequent quantum (particle) mechanics the basic equations remain covariant under canonical transformations (see Chapter 5).

Keywords

Covariance CTAB Arena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Born, Proc. Roy. Soc. London Ser. A 165 (1938), 291; 116 (1938), 552; Rev. Mod. Phys. 21 (1949), 463.ADSCrossRefGoogle Scholar
  2. 2.
    J. A. Brooke and E. Prugovecki, Nuovo Cimento A 78 (1984), 17.ADSGoogle Scholar
  3. 3.
    H. Brandt, Nucl. Phys. B 6 (Proc. Suppl.) (1989), 367.MATHCrossRefGoogle Scholar
  4. 4.
    E. R. Caianiello, Lett. Nuovo Cim. 25 (1979), 225.MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. R. Caianiello, M. Gasperini, and G. Scarpetta, Nuovo Cim. B 105 (1990), 259.MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. Das, J. Math. Phys. 7 (1966), 45; 21 (1980), 1506, 1513, 1521; Nucl. Phys. B 6 (Proc. Suppl.) (1989); Z. Phys. C. 41 (1988), 505.ADSCrossRefGoogle Scholar
  7. 7.
    M. Gell-Mann, Cal-Tech. Lab. Report CTSL-20, 1961.Google Scholar
  8. 8.
    Y. S. Kim and E. P. Wigner, Phys. Rev. A 36 (1987), 1293.ADSCrossRefGoogle Scholar
  9. 9.
    S. Okubo, Prog. Theor. Phys. (Kyoto) 27 (1962), 949.ADSMATHCrossRefGoogle Scholar
  10. 10.
    G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, London and New York, 1966, pp. 248.MATHGoogle Scholar
  11. 11.
    E. P. Wigner, Ann. of Math. 40 (1939), 149; in Proceedings of the First International Conference on the Physics of Phase Space (Y. S. Kim and W. W. Zachary, eds.), Springer, Verlag, Heielberg, 1987.MathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Yukawa, Phys. Rev. 76 (1949), 300; 77 (1950), 899; 80 (1950), 1047.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Anadijiban Das
    • 1
  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations