Advertisement

The Lorentz Transformation

  • Anadijiban Das
Chapter
Part of the Universitext book series (UTX)

Abstract

We shall derive the Lorentz transformation by physical arguments. Let us pretend for a short while that we do not know about Minkowski space-time and Minkowski coordinates. Instead, we are aware of space and time and inertial frames of reference. An inertial observer, an idealized point observer subject to no forces, is assumed to follow a straight line in Euclidean space E3.

Keywords

Invariant Subspace Lorentz Transformation Symmetric Tensor Lorentz Group Real Analytic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Choquet-Bruhat, C. De Witt-Morette, and M. Dillard-Bleick, Analysis, manifolds and, physics, North-Holland, Amsterdam, 1977. [p. 96]zbMATHGoogle Scholar
  2. 2.
    A. Einstein, Ann. Physik 17 (1905), 891–921. [p. 69]ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    I. M. Gelfand, R. A. Minlos, and Z. Y. Shapiro, Representations of the rotation and Lorentz groups, and their applications, The MacMillan Co., New York, 1963. [p. 81]Google Scholar
  4. 4.
    M. Hammermesh, Group theory, Addison-Wesley, MA, 1962. [pp. 84, 97, 89]Google Scholar
  5. 5.
    J. L. Synge, Relativity: The special theory, North-Holland, Amsterdam, 1964. [pp. 91, 93]Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Anadijiban Das
    • 1
  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada

Personalised recommendations