Advertisement

Geometric and Analytic Studies in Turbulence

  • Peter Constantin
Part of the Applied Mathematical Sciences book series (AMS, volume 100)

Abstract

Theories of turbulence ([1, 2] as well as [3] and [4]) are statistical. There exists also a relevant mathematical framework [5-7]—that of statistical solutions of the Navier–CStokes equations. Experimenters, on the other hand, have to deal with time averages (or space-time) averages.

Keywords

Active Scalar Strain Matrix Vorticity Magnitude Suitable Weak Solution Incompressible Euler Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR. 30, 299 (1941).Google Scholar
  2. [2]
    G. Batchelor, The Theory of Homogeneous Turbulence. Cambridge Univ. Press, Cambridge, 1960.Google Scholar
  3. [3]
    R.H. KraichnanJ. Math. Phys. 2, 124 (1961); 3, 205 (1962).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    A. ChorinCommun. Math. Phys. 114, 167 (1988); Phys. Rev. Lett. 60, 1947 (1988).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Hopf, J. Rat. Mech. Anal. 1, 87 (1952).MathSciNetMATHGoogle Scholar
  6. [6]
    C. Foias, Rend. Sem. Mat. Univ. Padova 48, 219 (1972); 49, 9 (1973).MathSciNetGoogle Scholar
  7. [7]
    M.J. Vishik and A.V. Fursikov, Ann. Sc. Norm. Sup. Pisa Sci. 4, 531 (1977); Dokl. Akad. Nauk. SSSR 239, 1025 (1978).MATHGoogle Scholar
  8. [8]
    Ch.R. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992).CrossRefGoogle Scholar
  9. [9]
    L.N. Howard, J. Fluid Mech. 17, 405 (1963).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    D.P. Lathrop, J. Fineberg, and H.L. Swinney, Phys. Rev. Lett. 68, 1515 (1992).CrossRefGoogle Scholar
  11. [11]
    P. Constantin, Commun. Math. Phys. 129, 241 (1990).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    P. Constantin, I. Procaccia, and K.R. Sreenivasan, Phys. Rev. Lett. 67, 1739 (1991).CrossRefGoogle Scholar
  13. [13]
    I. Procaccia, E. Ching, P. Constantin, L.P. Kadanoff, A. Libchaber, and X-Z. Wu, Phys. Rev A 44, 8091 (1991).CrossRefGoogle Scholar
  14. [14]
    D. Biskamp, Europhys. Lett. 21, 563 (1993).CrossRefGoogle Scholar
  15. [15]
    P. Constantin, Arg. Natl. Lab. preprint ANL/MCS-TM-170 (1992).Google Scholar
  16. [16]
    A. Bertozzi and P. Constantin, Commun. Math. Phys. 152, 19 (1993).MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J-Y. Chemin, Ann. Sc. Ec. Norm. Sup. Paris, to appear.Google Scholar
  18. [18]
    P. Constantin, A. Majda, and E. Tabak, in preparation.Google Scholar
  19. [19]
    T. Kato, J.T. Beale, and A. Majda, Commun. Math. Phys. 94, 61 (1989).MathSciNetGoogle Scholar
  20. [20]
    P. Constantin, Ch. Fefferman, and A. Majda, in preparation.Google Scholar
  21. [21]
    P. Constantin and Ch. Fefferman, Indiana Univ. Math. Journal, in press (1994).Google Scholar
  22. [22]
    P. Constantin, Univ. Minn. AHPCRC preprint 92-096 (1992).Google Scholar
  23. [23]
    P. Constantin and Ch. Fefferman, Nonlinearity, in press(1994).Google Scholar
  24. [24]
    P. Constantin and V. Yakhot, unpublished results.Google Scholar
  25. [25]
    S.D. Weinstein, P.L. Olson, and D.A. Yuen, Geophys. Astrophys. Fluid Dyn. 47, 157 (1989).CrossRefGoogle Scholar
  26. [26]
    R.T. Pierrehumbert, I.M. Held, and K.L. Swanson, preprint.Google Scholar
  27. [27]
    V.I. Yudovitch, Zh. Vych. Mat. 3, 1032 (1966).Google Scholar
  28. [28]
    N. Zabusky, M.H. Hughes, and K.V. Roberts, J. Comp. Phys. 30, 96 (1979).MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    H. Lamb, Hydrodynamics. Dover, New York, 1945.Google Scholar
  30. [30]
    Y.H. Wan and M. Pulvirenti, Commun. Math. Phys. 99, 435 (1985).MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    S. Alhinac, Univ. Paris Sud preprint, 1989.Google Scholar
  32. [32]
    P. Constantin and E.S. Titi, Commun. Math. Phys. 119, 177 (1988).MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    P. Constantin, P.D. Lax, and A. Majda, Commun. Pure Appl. Math. 38, 715 (1985).MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    A. Majda, Commun. Pure Appl. Math. 39, 5187 (1986).MathSciNetCrossRefGoogle Scholar
  35. [35]
    T.F. Buttke, Phys. Fluids A 1, 1283 (1989).CrossRefGoogle Scholar
  36. [36]
    D.G. Dritschel and M.E. McIntyre, Phys. Fluids A 2, 748 (1990).MathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Constantin and C. Foias, Navier-Stokes Equations. Univ. of Chicago Press, Chicago, 1988.MATHGoogle Scholar
  38. [38]
    P. Constantin, in New Perspectives in Turbulence. L. Sirovich (ed.), Springer-Verlag, New York, 1990.Google Scholar
  39. [39]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press, New York, 1959.Google Scholar
  40. [40]
    A.Y.S. Kuo and S. Corrsin, J. Fluid Mech. 50, 285 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter Constantin

There are no affiliations available

Personalised recommendations