Geometric and Analytic Studies in Turbulence

  • Peter Constantin
Part of the Applied Mathematical Sciences book series (AMS, volume 100)

Abstract

Theories of turbulence ([1, 2] as well as [3] and [4]) are statistical. There exists also a relevant mathematical framework [5-7]—that of statistical solutions of the Navier–CStokes equations. Experimenters, on the other hand, have to deal with time averages (or space-time) averages.

Keywords

Vortex Convection Torque Coherence Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR. 30, 299 (1941).Google Scholar
  2. [2]
    G. Batchelor, The Theory of Homogeneous Turbulence. Cambridge Univ. Press, Cambridge, 1960.Google Scholar
  3. [3]
    R.H. KraichnanJ. Math. Phys. 2, 124 (1961); 3, 205 (1962).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    A. ChorinCommun. Math. Phys. 114, 167 (1988); Phys. Rev. Lett. 60, 1947 (1988).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Hopf, J. Rat. Mech. Anal. 1, 87 (1952).MathSciNetMATHGoogle Scholar
  6. [6]
    C. Foias, Rend. Sem. Mat. Univ. Padova 48, 219 (1972); 49, 9 (1973).MathSciNetGoogle Scholar
  7. [7]
    M.J. Vishik and A.V. Fursikov, Ann. Sc. Norm. Sup. Pisa Sci. 4, 531 (1977); Dokl. Akad. Nauk. SSSR 239, 1025 (1978).MATHGoogle Scholar
  8. [8]
    Ch.R. Doering and P. Constantin, Phys. Rev. Lett. 69, 1648 (1992).CrossRefGoogle Scholar
  9. [9]
    L.N. Howard, J. Fluid Mech. 17, 405 (1963).MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    D.P. Lathrop, J. Fineberg, and H.L. Swinney, Phys. Rev. Lett. 68, 1515 (1992).CrossRefGoogle Scholar
  11. [11]
    P. Constantin, Commun. Math. Phys. 129, 241 (1990).MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    P. Constantin, I. Procaccia, and K.R. Sreenivasan, Phys. Rev. Lett. 67, 1739 (1991).CrossRefGoogle Scholar
  13. [13]
    I. Procaccia, E. Ching, P. Constantin, L.P. Kadanoff, A. Libchaber, and X-Z. Wu, Phys. Rev A 44, 8091 (1991).CrossRefGoogle Scholar
  14. [14]
    D. Biskamp, Europhys. Lett. 21, 563 (1993).CrossRefGoogle Scholar
  15. [15]
    P. Constantin, Arg. Natl. Lab. preprint ANL/MCS-TM-170 (1992).Google Scholar
  16. [16]
    A. Bertozzi and P. Constantin, Commun. Math. Phys. 152, 19 (1993).MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J-Y. Chemin, Ann. Sc. Ec. Norm. Sup. Paris, to appear.Google Scholar
  18. [18]
    P. Constantin, A. Majda, and E. Tabak, in preparation.Google Scholar
  19. [19]
    T. Kato, J.T. Beale, and A. Majda, Commun. Math. Phys. 94, 61 (1989).MathSciNetGoogle Scholar
  20. [20]
    P. Constantin, Ch. Fefferman, and A. Majda, in preparation.Google Scholar
  21. [21]
    P. Constantin and Ch. Fefferman, Indiana Univ. Math. Journal, in press (1994).Google Scholar
  22. [22]
    P. Constantin, Univ. Minn. AHPCRC preprint 92-096 (1992).Google Scholar
  23. [23]
    P. Constantin and Ch. Fefferman, Nonlinearity, in press(1994).Google Scholar
  24. [24]
    P. Constantin and V. Yakhot, unpublished results.Google Scholar
  25. [25]
    S.D. Weinstein, P.L. Olson, and D.A. Yuen, Geophys. Astrophys. Fluid Dyn. 47, 157 (1989).CrossRefGoogle Scholar
  26. [26]
    R.T. Pierrehumbert, I.M. Held, and K.L. Swanson, preprint.Google Scholar
  27. [27]
    V.I. Yudovitch, Zh. Vych. Mat. 3, 1032 (1966).Google Scholar
  28. [28]
    N. Zabusky, M.H. Hughes, and K.V. Roberts, J. Comp. Phys. 30, 96 (1979).MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    H. Lamb, Hydrodynamics. Dover, New York, 1945.Google Scholar
  30. [30]
    Y.H. Wan and M. Pulvirenti, Commun. Math. Phys. 99, 435 (1985).MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    S. Alhinac, Univ. Paris Sud preprint, 1989.Google Scholar
  32. [32]
    P. Constantin and E.S. Titi, Commun. Math. Phys. 119, 177 (1988).MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    P. Constantin, P.D. Lax, and A. Majda, Commun. Pure Appl. Math. 38, 715 (1985).MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    A. Majda, Commun. Pure Appl. Math. 39, 5187 (1986).MathSciNetCrossRefGoogle Scholar
  35. [35]
    T.F. Buttke, Phys. Fluids A 1, 1283 (1989).CrossRefGoogle Scholar
  36. [36]
    D.G. Dritschel and M.E. McIntyre, Phys. Fluids A 2, 748 (1990).MathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Constantin and C. Foias, Navier-Stokes Equations. Univ. of Chicago Press, Chicago, 1988.MATHGoogle Scholar
  38. [38]
    P. Constantin, in New Perspectives in Turbulence. L. Sirovich (ed.), Springer-Verlag, New York, 1990.Google Scholar
  39. [39]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics. Pergamon Press, New York, 1959.Google Scholar
  40. [40]
    A.Y.S. Kuo and S. Corrsin, J. Fluid Mech. 50, 285 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter Constantin

There are no affiliations available

Personalised recommendations